1.10 Ergodic theorem

Ergodic theorems concern the limiting behaviour of averages over time. We shall
prove a theorem which identifies for Markov chains the long-run proportion of
time spent in each state. An essential tool is the following ergodic theorem for
independent random variables which is a version of the strong law of large numbers.

Theorem 1.10.1 (Strong law of large numbers). LetY1,Ys,... be a sequence
of independent, identically distributed, non-negative random variables with
E(Y1) = p. Then
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Proof. A proof for the case u < oo may be found, for example, in Probability with
Martingales by David Williams (Cambridge University Press, 1991). The case

where p = o0 is a simple deduction. Fix N < oo and set Yé”’ =Y, AN. Then
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with probability one. As N 1 oo we have E(Y; A N) 1 u by monotone convergence
(see Section 6.4). So we must have, with probability 1
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We denote by V;(n) the number of visits to i before n:

n—1
Vi) =Y 1ixe=iy-
k=0

Then V;(n)/n is the proportion of time before n spent in state i. The following
result gives the long-run proportion of time spent by a Markov chain in each state.

Theorem 1.10.2 (Ergodic theorem). Let P be irreducible and let \ be any
distribution. If (Xp)n>o0 is Markov(A, P) then
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where m; = E;(T;) is the expected return time to state i. Moreover, in the positive
recurrent case, for any bounded function f: I — R we have
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where

F=> "mfi

iel
and where (7; : 1 € I) is the unique invariant distribution.

Proof. If P is transient, then, with probability 1, the total number V; of visits to ¢
is finite, so

Vi) Vi o 1
n n m;

Suppose then that P is recurrent and fix a state . For T = T; we have P(T <
00) = 1 by Theorem 1.5.7 and (X7.4n)n>0 is Markov(d;, P) and independent of
Xo,X1,--.,Xr by the strong Markov property. The long-run proportion of time
spent in i is the same for (X74,)n>0 and (X,)n>0, so it suffices to consider the
case A = ;.

Write Szm for the length of the rth excursion to 4, as in Section 1.5. By Lemma
1.5.1, the non-negative random variables Sl(l), Sz-(2), ... are independent and iden-
tically distributed with E;(S\")) = m,. Now

SM 45V <y,
the left-hand side being the time of the last visit to i before n. Also
S 4 4 VD >y
the left-hand side being the time of the first visit to ¢ after n — 1. Hence
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By the strong law of large numbers
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and, since P is recurrent
P(Vi(n) - oo asn — o0) = 1.

So, letting n — oo in (1.8), we get
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which implies
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Assume now that (X,),>0 has an invariant distribution (m; : @ € I). Let
f I = R be a bounded function and assume without loss of generality that
|f| < 1. For any J C I we have
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We proved above that
P(@—)masn%ooforalli) =1.

Given € > 0, choose J finite so that

Zﬂ'z’ < 8/4

igJ

and then N = N(w) so that, for n > N(w)
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Then, for n > N(w), we have
1 n—1 _
~> (X = F <e,
k=0

which establishes the desired convergence. [

We consider now the statistical problem of estimating an unknown transition
matrix P on the basis of observations of the corresponding Markov chain. Consider,
to begin, the case where we have NV +1 observations (X, )o<n<n. The log-likelihood
function is given by

1(P) =1og(AxoPXox, - --PXn_1xn) = D Nijlogpi
1,J€I1

up to a constant independent of P, where IV;; is the number of transitions from ¢ to
j- A standard statistical procedure is to find the mazimum likelihood estimate P,
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which is the choice of P maximizing I(P). Since P must satisfy the linear constraint
>_;pij =1 for each i, we first try to maximize

I(P)+ ) wipij
ijel

and then choose (u; : i € I) to fit the constraints. This is the method of Lagrange
multipliers. Thus we find

N-1 N-1
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which is the proportion of jumps from 7 which go to j.

We now turn to consider the consistency of this sort of estimate, that is to say
whether p;; — p;; with probability 1 as N — oo. Since this is clearly false when ¢
is transient, we shall slightly modify our approach. Note that to find p;; we simply

have to maximize

> Nijlogpi

j€l
subject to > jpiy =1 the other terms and constraints are irrelevant. Suppose
then that instead of N + 1 observations we make enough observations to ensure
the chain leaves state 7 a total of N times. In the transient case this may involve
restarting the chain several times. Denote again by N;; the number of transitions
from i to j.

To maximize the likelihood for (p;; : j € I) we still maximize

> Nijlogpi;
jer

subject to Y jPij = 1, which leads to the maximum likelihood estimate
ﬁij = Nij /N

But N;; = Y1 + ...+ Yy, where Y, = 1 if the nth transition from i is to j, and
Y, = 0 otherwise. By the strong Markov property Y7,... ,Yy are independent and
identically distributed random variables with mean p;;. So, by the strong law of
large numbers

P(ﬁzg — Pij as N — OO) = 1,

which shows that p;; is consistent.

Exercises

1.10.1 Prove the claim (d) made in example (v) of the Introduction.

1.10.2 A professor has N umbrellas. He walks to the office in the morning and
walks home in the evening. If it is raining he likes to carry an umbrella and if
it is fine he does not. Suppose that it rains on each journey with probability p,
independently of past weather. What is the long-run proportion of journeys on
which the professor gets wet?
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1.10.3 Let (X,,)n>0 be an irreducible Markov chain on I having an invariant distri-
bution 7. For J C I let (Y;,)m>0 be the Markov chain on J obtained by observing
(Xn)n>o0 whilst in J. (See Example 1.4.4.) Show that (Y;,)m >0 is positive recurrent
and find its invariant distribution.

1.10.4 An opera singer is due to perform a long series of concerts. Having a fine
artistic temperament, she is liable to pull out each night with probability 1/2.
Once this has happened she will not sing again until the promoter convinces her
of his high regard. This he does by sending flowers every day until she returns.
Flowers costing = thousand pounds, 0 < z < 1, bring about a reconciliation with
probability 1/z. The promoter stands to make £750 from each successful concert.
How much should he spend on flowers?



