1.4 Strong Markov property

In Section 1.1 we proved the Markov property. This says that for each time m,
conditional on X,, = 4, the process after time m begins afresh from ¢. Suppose,
instead of conditioning on X,, = i, we simply waited for the process to hit state
i, at some random time H. What can one say about the process after time H?
What if we replaced H by a more general random time, for example H — 17 In this
section we shall identify a class of random times at which a version of the Markov
property does hold. This class will include H but not H — 1; after all, the process
after time H — 1 jumps straight to 4, so it does not simply begin afresh.

A random variable T : Q — {0,1,2,...} U {oc} is called a stopping time if the
event {T = n} depends only on Xy, X1,...,X, for n =0,1,2,.... Intuitively, by
watching the process, you know at the time when T occurs. If asked to stop at T,
you know when to stop.

Examples 1.4.1
(a) The first passage time
T; =inf{n >1: X, = j}
is a stopping time because
{Tj=n}={X1#74,--., Xn1# 5, Xn=13}
(b) The first hitting time H4 of Section 1.3 is a stopping time because
{(HA=n}={Xo € A,... Xo1 €A X, c A}

(c) The last exit time
LA =sup{n >0: X, € A}

is not in general a stopping time because the event {L# = n} depends on whether

(Xntm)m>1 visits A or not.

We shall show that the Markov property holds at stopping times. The crucial
point is that, if T is a stopping time and B C (2 is determined by Xo, X1,..., X7,
then BN {T = m} is determined by Xo, X1,..., X, for all m =0,1,2,....

Theorem 1.4.2 (Strong Markov property). Let (X,),>0 be Markov(\, P) and
let T be a stopping time of (Xp)n>0. Then, conditional on T < oo and X =1,
(X14n)n>o0 is Markov(d;, P) and independent of Xo,X1,... ,Xr.

Proof. If B is an event determined by Xg,Xi,...,Xr, then BN {T = m} is
determined by Xo, X1,..., X, so, by the Markov property at time m

P{X7 = jo, X741 =1, , X74n = ju} N BN{T = m} N {X7 =i})
:Pz(XO :jg,Xl :jl,... ;Xn :Jn)P(Bﬂ{T:m}ﬂ{XT :l})
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where we have used the condition 7' = m to replace m by T. Now sum over
m =0,1,2,... and divide by P(T < oo, X7 = i) to obtain
P{Xr = jo, X141 = j1,-- s X140 = jn} N B | T < 00, X7 = i)
:P'E(X():JOJXlz.jla7Xn:Jn)P(B|T<OO,XT:Z) OJ

The following example uses the strong Markov property to get more information
on the hitting times of the chain considered in Example 1.3.3.

Example 1.4.3
Consider the Markov chain (X,),>¢ with diagram

qg p a9 p g p
0 1 ] 1+1

where 0 < p=1—¢ < 1. We know from Example 1.3.3 the probability of hitting
0 starting from 1. Here we obtain the complete distribution of the time to hit 0
starting from 1 in terms of its probability generating function. Set

H; =inf{n >0: X, = j}
and, for 0 <s<1
¢(s) = Er(s™) = Y s"Pi(Ho =n).
n<oo

Suppose we start at 2. Apply the strong Markov property at Hi to see that
under P, conditional on H; < oo, we have Hy = H; + Hg, where Hy, the time
taken after H; to get to 0, is independent of H; and has the (unconditioned)
distribution of H;. So

Bo(sH0) = Ey(st | Hy < 00)Ea(st0 | Hy < 00)Py(H, < 00)
= By(s™ 11, <00) Ba(s™ | Hy < 00)
= Bx(s™)? = ¢(s).
Then, by the Markov property at time 1, conditional on X; = 2, we have Hy =

1+ Hy, where Hy, the time taken after time 1 to get to 0, has the same distribution
as Hy does under P,. So

$(s) = Er(s™0) = pBy (s™0 | Xy = 2) + qBu (s™ | X1 = 0)
= pEy(s"H0 | Xy = 2) + qBEi (s | X, = 0)
= psBs(s™) + gs
= psg(s)® + gs.
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Thus ¢ = ¢(s) satisfies
ps¢’ —p+qs =0 (1.5)

and
¢ =(1++/1—4pgs?)/2ps.

Since ¢(0) < 1 and ¢ is continuous we are forced to take the negative root at s = 0
and stick with it for all 0 < s < 1.

To recover the distribution of Hy we expand the square-root as a power series:

o(s) = 2%)3{1 - (1 + 5(—4pgs”) + §(—5)(—4pgs®)* /2! + )}
:qs+pq283+...

=sP(Hy=1)+s’P(Hy=2)+s*P(Hy=3)+... .

The first few probabilities P;(Hy = 1), Py(Hy = 2),... are readily checked from
first principles.

On letting s 1 1 we have ¢(s) — Py (Hy < 00), s0o

Py(Ho < )_1—\/1—4pq_ 1 ifp<yg
HHo s o) = 2p “la/p ifp>q

(Remember that ¢ =1 — p, so

V1—4pg=\/1—4p+4p> = [1-2p| = |2¢ - 1|. )
We can also find the mean hitting time using

Ey(Ho) = lim ¢/ (5).

It is only worth considering the case p < ¢, where the mean hitting time has a
chance of being finite. Differentiate (1.5) to obtain

2pspd’ +pp* — ¢ +q =0

SO

¢'(s) = (pg(s)” + @)/ (1 — 2psg(s)) > 1/(1 - 2p) =1/(¢—p) asstlL
See Example 5.1.1 for a connection with branching processes.

Example 1.4.4

We now consider an application of the strong Markov property to a Markov chain
(X7)n>0 observed only at certain times. In the first instance suppose that J is
some subset of the state-space I and that we observe the chain only when it takes
values in J. The resulting process (Y;,)m>0 may be obtained formally by setting
Y = X7, where

To=inf{n >0: X, € J}
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and, for m =0,1,2,...
Tmt1 =inf{n > T, : X,, € J}.

Let us assume that P(T,, < oo) = 1 for all m. For each m we can check easily
that T}, the time of the mth visit to J, is a stopping time. So the strong Markov
property applies to show, for ig, ... ,imy1 € J, that
PVt = imy1 | Yo =0y, Vi = im)

= P(X1,,, = tmt1 | X1, =0,... , X1, =)

=P, (X1, =im+1) =D ipis
where, for ¢,5 € J

Dy = hg

and where, for j € J, the vector (hf :4 € I) is the minimal non-negative solution
to

h{ =pi; + Zpikhi. (1.6)
kgJ
Thus (Yon)m>o is a Markov chain on J with transition matrix P.

A second example of a similar type arises if we observe the original chain (X,)n,>0
only when it moves. The resulting process (Z,)m>o is given by Z,, = Xg,, where
So =0 and for m=0,1,2,...

Smt1 =inf{n > S, : X,, # Xg, }.
Let us assume there are no absorbing states. Again the random times S,, form > 0
are stopping times and, by the strong Markov property
P(Zm+1 = im+1 | Zo =40y yZm = im)
=P(Xs, 41 = imt1 | X5, =0,---,Xs,, =im)
= 'Pim (XS1 = 7:m+1) = ﬁimim-}—l

where p;; = 0 and, for ¢ # j
Pij =pij/ Y Din-
ki
Thus (Zm)m>0 is a Markov chain on I with transition matrix P.

Exercises
1.4.1 Let Y7,Y5,... be independent identically distributed random variables with
PYi=1)=PY 1 =-1)=1/2andset Xo =1, X, = Xo+ Y1 +... + Y, for
n > 1. Define
Hy =inf{n >0: X, =0}.

Find the probability generating function ¢(s) = E(sH0).

Suppose the distribution of ¥;7,Y5,... is changed to P(Y; =2)=P(Y; =-1) =
1/2. Show that ¢ now satisfies

s¢> —20+5=0.

1.4.2 Deduce carefully from Theorem 1.3.2 the claim made at (1.6).



