1.7 Invariant distributions

Many of the long-time properties of Markov chains are connected with the notion
of an invariant distribution or measure. Remember that a measure \ is any row
vector (A; : ¢ € I) with non-negative entries. We say A is invariant if

AP =\

The terms equilibrium and stationary are also used to mean the same. The first
result explains the term stationary.

Theorem 1.7.1. Let (X,)n>0 be Markov(\, P) and suppose that A is invariant
for P. Then (Xmin)n>0 s also Markov(\, P).

Proof. By Theorem 1.1.3, P(X,,, = i) = (A\P™); = \; for all i and clearly, con-
ditional on X4y, = %, Xyynt1 is independent of X, Xony1,--. s Xmyn and has
distribution (p;; : j € I). O

The next result explains the term equilibrium.
Theorem 1.7.2. Let I be finite. Suppose for some i € I that

pEJ")—Hrj as m—oo foralljel

Then m = (m; : j € I) is an invariant distribution.

Proof. We have

Somi=2 Jim g = lim D rl =1

jel jer jer

and

_ _ N
™= nlgr;op = lim gpk prj = ggggopu? Prj = kzaﬂ'kpkj

where we have used finiteness of I to justify interchange of summation and limit

operations. Hence 7 is an invariant distribution. O

Notice that for any of the random walks discussed in Section 1.6 we have pg}) -0

asm — oo for all 4, j € I. The limit is certainly invariant, but it is not a distribution!

Theorem 1.7.2 is not a very useful result but it serves to indicate a relationship
between invariant distributions and n-step transition probabilities. In Theorem
1.8.3 we shall prove a sort of converse, which is much more useful.

Example 1.7.3

Consider the two-state Markov chain with transition matrix

_(1-« el
P=(157 %)
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Ignore the trivial cases a = f =0 and @ = 8 = 1. Then, by Example 1.1.4

(Bl +B) af(atp)
P (5/(a+5) af(a+ )

s0, by Theorem 1.7.2, the distribution (8/(a + 8),a/(a + 8)) must be invariant.
There are of course easier ways to discover this.

) as n — oo,

Example 1.7.4

Consider the Markov chain (X;),>o with diagram
To find an invariant distribution we write down the components of the vector
equation 7P =7

—1
7T1—§7T3

Ty = §m1 + 373

T3 = %71'2 + %7!’3.
In terms of the chain, the right-hand sides give the probabilities for X;, when X
has distribution 7, and the equations require X; also to have distribution 7. The

equations are homogeneous so one of them is redundant, and another equation is
required to fix 7w uniquely. That equation is

M+ me+m3=1

and we find that = = (1/5,2/5,2/5).
According to Example 1.1.6

P 5 1/5 asn— oo

so this confirms Theorem 1.7.2. Alternatively, knowing that pgrf) had the form

\" nm . nm
P =a+ <5> (bcos7 + csin 7)

we could have used Theorem 1.7.2 and knowledge of m; to identify a = 1/5, instead
of working out pgzl) in Example 1.1.6.
In the next two results we shall show that every irreducible and recurrent sto-

chastic matrix P has an essentially unique positive invariant measure. The proofs
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rely heavily on the probabilistic interpretation so it is worth noting at the outset
that, for a finite state-space I, the existence of an invariant row vector is a simple
piece of linear algebra: the row sums of P are all 1, so the column vector of ones is

an eigenvector with eigenvalue 1, so P must have a row eigenvector with eigenvalue
1.

For a fixed state k, consider for each i the expected time spent in i between visits

to k:
Ty —1

W =Er Y lx.=i)-
n=0

Here the sum of indicator functions serves to count the number of times n at which
X, = i before the first passage time T}.

Theorem 1.7.5. Let P be irreducible and recurrent. Then
() %=1

(ii) v* = (vF : i € I) satisfies v*P = ~F;

(iii) 0 <vF < o0 for allieI.

Proof. (i) This is obvious. (ii) For n = 1,2,... the event {n < T}} depends only
on Xo,X1,...,Xn—1, 80, by the Markov property at n — 1

Py(Xpo1 =1, Xp =7 and n <T}) = Pp(Xp—1 =4 and n < Ty)pij-

Since P is recurrent, under P, we have T}, < oo and X¢ = X7, = k with probability
one. Therefore

T
= Ej Z 1{X =j} = Ej, Z 1{X =j and n<Tx}
n=1 n=1

Pk(X =jand n < Ty)

oo
2 X1 =i,X, =j and n < Ty)

n=1

I
M NM i ﬁM8

o0
Z (Xp—1 =t and n <Ty)

oo
= z]Ek Z ]-{Xm:z' and m<T,—1}
i€l m=0
Tw—1
=D piiBe ) Yxa=iy = )i
iel m=0 icl

(iii) Since P is irreducible, for each state i there exist n,m > 0 with pg,f), p,(gzn) > 0.
(m

Then v} > 'ykp,”) > 0 and ~; pgk) <~¥=1by (i) and (ii). O



Theorem 1.7.6. Let P be irreducible and let A be an invariant measure for P
with A\, = 1. Then X\ > ~+*. If in addition P is recurrent, then X = ~*.

Proof. For each j € I we have

Aj =) NigPioj = Y, NioPioj + Pj

i€l i0#£k
= Z Aiy PivioPioj + (pkj + Z pkigPigj)
i0,i17k io#£k

E Aip Pinin_1 -+ Pigj
0y sintk

+ (ij + Z DPrioPioj + -+ Z Phin_1 '--piliopioj)

to7#k 105eee yin—17k
> Pk(Xl =jand Ty > 1) +Pk(X2 =jand T} > 2)
+...+ P (X, =jand Ty > n)
-7 asn — .
So A > ~*. If P is recurrent, then v* is invariant by Theorem 1.7.5, s0 pt = A — ¥
is also invariant and g > 0. Since P is irreducible, given ¢ € I, we have pg;:) >0
for some n, and 0 = p, = Y- ;) ujp;? > uipgz), sop; =0. [
Recall that a state 7 is recurrent if
P;(X,, =i for infinitely many n) =1
and we showed in Theorem 1.5.3 that this is equivalent to
P,'(Ti < OO) =1.
If in addition the expected return time

is finite, then we say ¢ is positive recurrent. A recurrent state which fails to have
this stronger property is called null recurrent.

Theorem 1.7.7. Let P be irreducible. Then the following are equivalent:
(i) every state is positive recurrent;
(ii) some state i is positive recurrent;
(iii) P has an invariant distribution, © say. Moreover, when (iii) holds we have
m; = 1/m; for all i.

Proof. (i) = (ii) This is obvious.
(ii) = (iii) If ¢ is positive recurrent, it is certainly recurrent, so P is recurrent. By
Theorem 1.7.5, v* is then invariant. But

> =mi < oo
jeI
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s0 mj = v} /m; defines an invariant distribution.
(iii) = (i) Take any state k. Since P is irreducible and ) ; ., 7; = 1 we have

T = Eie I mpg,?) > 0 for some n. Set A\; = m;/m. Then A is an invariant measure

with A\; = 1. So by Theorem 1.7.6, A > v*. Hence
=Y <Y=L oo (L.7)
Ty '
iel iel

and k is positive recurrent.
To complete the proof we return to the argument for (iii) = (i) armed with the

knowledge that P is recurrent, so A = 7* and the inequality (1.7) is in fact an
equality. O
Example 1.7.8 (Simple symmetric random walk on 7)
The simple symmetric random walk on Z is clearly irreducible and, by Example
1.6.1, it is also recurrent. Consider the measure
m; =1 for all 4.

Then

Ti = 31 + 3Tt

so 7 is invariant. Now Theorem 1.7.6 forces any invariant measure to be a scalar
multiple of 7. Since ), , m; = 0o, there can be no invariant distribution and the
walk is therefore null recurrent, by Theorem 1.7.7.

Example 1.7.9

The existence of an invariant measure does not guarantee recurrence: consider, for
example, the simple symmetric random walk on Z3, which is transient by Example
1.6.3, but has invariant measure 7 given by 7; = 1 for all 4.

Example 1.7.10

Consider the asymmetric random walk on Z with transition probabilities p; ; 1 =
g < p = pii+1- In components the invariant measure equation 7P = 7 reads

m; = Ti—1P + Tit19.
This is a recurrence relation for 7 with general solution
m; = A+ B(p/q)"-

So, in this case, there is a two-parameter family of invariant measures — uniqueness
up to scalar multiples does not hold.

Example 1.7.11

Consider a success-run chain on Z+, whose transition probabilities are given by

Dii+1 = DPi, DPio =q;i =1 —p;.
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Then the components of the invariant measure equation 7P = 7 read

o0
o = E qiTi,
=0
T = pi—1mMi—1, fori>1.

Suppose we choose p; converging sufficiently rapidly to 1 so that

oo
p=][pi>0
i=0
which is equivalent to
oo
Y=o
=0

Then for any solution of 7P = 7w we have

i—1
m = Hpj To > PTo
Jj=0
and so

oo
To 2 PTo Zqz’-
i=0

This last equation forces either mg = 0 or mg = 00, so there is no invariant measure.

Exercises

1.7.1 Find all invariant distributions of the transition matrix in Exercise 1.2.1.

1.7.2 Gas molecules move about randomly in a box which is divided into two halves
symmetrically by a partition. A hole is made in the partition. Suppose there are
N molecules in the box. Show that the number of molecules on one side of the
partition just after a molecule has passed through the hole evolves as a Markov
chain. What are the transition probabilities? What is the invariant distribution of
this chain?

1.7.3 A particle moves on the eight vertices of a cube in the following way: at each
step the particle is equally likely to move to each of the three adjacent vertices,
independently of its past motion. Let 7 be the initial vertex occupied by the particle,
o the vertex opposite i. Calculate each of the following quantities:

(i) the expected number of steps until the particle returns to i;

(ii) the expected number of visits to o until the first return to 4;

(iii) the expected number of steps until the first visit to o.

1.7.4 Let (Xy)n>0 be a simple random walk on Z with p;;—1 = ¢ < p = pi it1.

Find
To—1
7 = Eo (Z 1{Xn:z'}>

n=0
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and verify that
7 = ir;f A; forallé

where the infimum is taken over all invariant measures A\ with Ay = 1. (Compare
with Theorem 1.7.6 and Example 1.7.10.)

1.7.5 Let P be a stochastic matrix on a finite set I. Show that a distribution 7
is invariant for P if and only if 7(I — P + A) = a, where A = (a;; : i,j € I) with
a;; =1 for all i and j, and a = (a; : i € I) with a; = 1 for all i. Deduce that if P
is irreducible then I — P + A is invertible. Note that this enables one to compute
the invariant distribution by any standard method of inverting a matriz.



