1.8 Convergence to equilibrium

We shall investigate the limiting behaviour of the n-step transition probabilities
pg-‘) as n — 00. As we saw in Theorem 1.7.2, if the state-space is finite and if for
some 4 the limit exists for all j, then it must be an invariant distribution. But, as

the following example shows, the limit does not always exist.

Example 1.8.1

Consider the two-state chain with transition matrix

01
(0 1)
Then P2 = I, so P?® = [ and P?"*! = P for all n. Thus pgy) fails to converge for
all 4,5.
(n

Let us call a state ¢ aperiodic if p;;

as an exercise to show that ¢ is aperiodic if and only if the set {n > 0 : pﬁj‘ ) > 0}
has no common divisor other than 1. This is also a consequence of Theorem 1.8.4.
The behaviour of the chain in Example 1.8.1 is connected with its periodicity.

)'> 0 for all sufficiently large n. We leave it

Lemma 1.8.2. Suppose P is irreducible and has an aperiodic state i. Then, for
all states j and k, pg-z) > 0 for oll sufficiently large n. In particular, oll states are
aperiodic.

Proof. There exist r,s > 0 with pg-?, pg,sc) > 0. Then

P > plDpip) > 0

for all sufficiently large n. O

Here is the main result of this section. The method of proof, by coupling two
Markov chains, is ingenious.

Theorem 1.8.3 (Convergence to equilibrium). Let P be irreducible and
aperiodic, and suppose that P has an invariant distribution w. Let X be any distri-
bution. Suppose that (X,)n>o0 is Markov(X, P). Then

P(X,=j)—m asn— oo forallj.

In particular

pz(;l) —mj asn— oo for alli,j.

Proof. We use a coupling argument. Let (Y;,),>0 be Markov(w, P) and independent
of (Xn)n>0. Fix a reference state b and set T'=inf{n > 1: X, =Y,, = b}.

Step 1. We show P(T < oo0) = 1. The process W,, = (X,,,Y,) is a Markov chain
on I x I with transition probabilities

5(z',k)(j,l) = DijPkl
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and initial distribution
K(ik) = Aik.

Since P is aperiodic, for all states i, j, k,l we have

~(n) _ (n) (n
PGy = ng )Pscz) >0

for all sufficiently large n; so P is irreducible. Also, P has an invariant distribution
given by
T(ik) = TiTk

so, by Theorem 1.7.7, Pis positive recurrent. But 7" is the first passage time of
W, to (b,b) so P(T < o0) =1, by Theorem 1.5.7.

Step 2. Set
7z - { X, ifn<T
Y, ifn>T.

The diagram below illustrates the idea. We show that (Z,),>0 is Markov(A, P).

The strong Markov property applies to (Wy,)n>0 at time T, 80 (X1qn, Yrin)n>0
is Markov(d(s,4), P) and independent of (Xo,Y), (X1,Y1),...,(X7,Yr). By sym-
metry, we can replace the process (X14n, Y14n)n>0 by (Y74n, X174n)n>0 which is

also Markov(d(s,5), P) and remains independent of (Xo, Yo), (X1,Y1),..., (X7, Y7).

Hence W), = (Z,, Z],) is Markov(u, P) where

7 Y, ifn<T
"l X, ifn>T.

In particular, (Z,)n>0 is Markov (A, P).
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Step 3. We have
PZ,=j)=PXp,=jandn<T)+PY,=jandn>T)
0

|P(Xn:j)_7rj|:|P(Zn=j)_P(Yn:j)|
=|PXp,=jandn<T)-P(Y,=jand n <T)|
<Pn<T)

and Pln<T)—0asn—oc0. O

To understand this proof one should see what goes wrong when P is not ape-
riodic. Consider the two-state chain of Example 1.8.1 which has (1/2,1/2) as its
unique invariant distribution. We start (X,)n>o from 0 and (Y3,),>0 with equal
probability from 0 or 1. However, if Yy = 1, then, because of periodicity, (Xp)n>0
and (Y)n>0 will never meet, and the proof fails. We move on now to the cases
that were excluded in the last theorem, where (X;)>¢ is periodic or transient or
null recurrent. The remainder of this section might be omitted on a first reading.

Theorem 1.8.4. Let P be irreducible. There is an integer d > 1 and a partition
I=CoUCiU...UCy_1

such that (setting Cpaqr = Cy)

(1) pgf) >0 only ifi € C. and j € Cryyy for some r;

(ii) pgyd) > 0 for all sufficiently large n, for all i,j € Cy, for all r.

Proof. Fix a state k and consider S = {n >0 :p,(!,? > 0}. Choose ny,ns € S with
ny < ne and such that d := ny — ny is as small as possible. (Here and throughout
we use the symbol := to mean ‘defined to equal’.) Define for r =0,... ,d—1

Cr={iel: p,(g‘”r) > 0 for some n > 0}.

Then CyU...UCy4_1 = I, by irreducibility. Moreover, if psgd”) > 0 and p,(ngrs) >0
for some r,s € {0,1,...,d — 1}, then, choosing m > 0 so that pg,zn) > 0, we have
p,(!,idJrTer) > 0 and p,(!,;dJrSer) > 0 so r = s by minimality of d. Hence we have a

partition.

To prove (i) suppose pgb) > 0 and i € C,. Choose m so that pggd”) > 0, then

p,(ngJer) > 050 j € Cryn as required. By taking i = j = k we now see that d

must divide every element of S, in particular 7.

Now for nd > n?, we can write nd = gn; + r for integers ¢ > n; and 0 < r <
ny — 1. Since d divides n; we then have r = md for some integer m and then
nd = (g — m)ny, + mny. Hence

B 2 630l >0



(ma1)

and hence nd € S. To prove (ii) for i, j € C; choose m; and my so that p;;;""’ >0
and pch"’) > 0, then

pz(;n1+nd+mz) > pglrcm)pglzgd)pgglz) >0

whenever nd > nf Since my + mo is then necessarily a multiple of d, we are done.
|

We call d the period of P. The theorem just proved shows in particular for all
i € I that d is the greatest common divisor of the set {n > 0 : pgl-") > 0}. This is
sometimes useful in identifying d.

Finally, here is a complete description of limiting behaviour for irreducible
chains. This generalizes Theorem 1.8.3 in two respects since we require neither
aperiodicity nor the existence of an invariant distribution. The argument we use
for the null recurrent case was discovered recently by B. Fristedt and L. Gray.

Theorem 1.8.5. Let P be irreducible of period d and let Cy,C1,... ,Cq_1 be the
partition obtained in Theorem 1.8.4. Let X be a distribution with ) ;.o Ai = 1.
Suppose that (Xp)n>o is Markov(A, P). Then forr =0,1,...,d—1 and j € C,
we have

P(Xpayr =j) > d/m; asn— oo
where m; is the expected return time to j. In particular, for i € Cy and j € C, we

have

pgld”) —d/m; asn— oco.

Proof.

Step 1. We reduce to the aperiodic case. Set v = AP", then by Theorem 1.8.4 we

have
Z v; = 1.

i€Cr

Set Y, = Xyng4r, then (Y3)n>o is Markov(v, P9) and, by Theorem 1.8.4, P? is
irreducible and aperiodic on C,. For j € C, the expected return time of (Y,)n>0
to j is mj/d. So if the theorem holds in the aperiodic case, then

P(Xnayr =J) =P, =j) > d/m; asn— oo

so the theorem holds in general.

Step 2. Assume that P is aperiodic. If P is positive recurrent then 1/m; = =,
where 7 is the unique invariant distribution, so the result follows from Theorem
1.8.3. Otherwise m; = oo and we have to show that

P(X,=j)—0 asn— oc.

If P is transient this is easy and we are left with the null recurrent case.
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Step 3. Assume that P is aperiodic and null recurrent. Then

oo

> Py(T; > k) = E;(T))
k=0

I
8

Given € > 0 choose K so that

K-1
Py(T; > k) >
k=0

mll\)

Then, forn > K —1

n

1> > P(Xp=jand Xp #jform=k+1,...,n)

k=n—K+1

Il
M:

P(Xy = j)Pi(T; >n—k)
k=n—K+1

K-1
:ZP nk = J§)P;i(Tj > k)
=0

so we must have P(X,,_; = j) < ¢e/2 for some k € {0,1,... ,K —1}.

Return now to the coupling argument used in Theorem 1.8.3, only now let
(Yn)n>0 be Markov(pu, P), where p is to be chosen later. Set W,, = (X,,Y,). As
before, aperiodicity of (X;),>0 ensures irreducibility of (Wp,)n>0. If (Wp)n>0 is
transient then, on taking p = A, we obtain

P(Xn =j)2 ZP(Wn = (.77.7)) -0

as required. Assume then that (W,),>o is recurrent. Then, in the notation of
Theorem 1.8.3, we have P(T < oo) = 1 and the coupling argument shows that

|IP(Xp=7)—P(Y, =) >0 asn— oo.

We exploit this convergence by taking p = AP* for k = 1,... ,K — 1, so that
P(Y, = j) = P(Xy1r = j)- We can find N such that for n > N and k =
1,...,K—-1

?

N M

But for any n we can find k € {0,1,... ,K — 1} such that P(X,, = j) < &/2.
Hence, for n > N
P(X,=j)<e.

Since € > 0 was arbitrary, this shows that P(X,, = j) — 0 as n — oo, as re-
quired. []

Exercises

1.8.1 Prove the claims (e), (f) and (g) made in example (v) of the Introduction.
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1.8.2 Find the invariant distributions of the transition matrices in Exercise 1.1.7,
parts (a), (b) and (c), and compare them with your answers there.

1.8.3 A fair die is thrown repeatedly. Let X,, denote the sum of the first n throws.
Find
lim P(X,, is a multiple of 13)

n—oo

quoting carefully any general theorems that you use.

1.8.4 Each morning a student takes one of the three books he owns from his shelf.
The probability that he chooses book i is «;, where 0 < a; < 1 for i = 1,2,3, and
choices on successive days are independent. In the evening he replaces the book
at the left-hand end of the shelf. If p,, denotes the probability that on day n the
student finds the books in the order 1,2,3, from left to right, show that, irrespective
of the initial arrangement of the books, p,, converges as n — 0o, and determine the
limit.

1.8.5 (Renewal theorem). Let Y7,Y5,... be independent, identically distributed
random variables with values in {1,2,...}. Suppose that the set of integers

{n:P(Yr=n)>1}

has greatest common divisor 1. Set u = E(Y;). Show that the following process is
a Markov chain:

Xp=inf{m>n:m=Y +...+Y} for some k > 0} —n.

Determine
lim P(X, =0)

n—oo

and hence show that as n — oo
Pn=Y1+...4+Y}; for some k > 0) = 1/pu.

(Think of Y1,Ya, ... as light-bulb lifetimes. A bulb is replaced when it fails. Thus the
limiting probability that a bulb is replaced at time n is 1/pu. Although this appears
to be a very special case of convergence to equilibrium, one can actually recover the

full result by applying the renewal theorem to the excursion lengths Slgl),Si(z), -
from state i.)



