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We shall now describe one procedure to simulate a Markov chain (Xn)nzo with
initial distribution A and transition matrix P. Since Ziel A; = 1 we can partition
[0,1] into disjoint subintervals (A; : i € T) with lengths

|Ai] = A

Similarly for each 7 € I, we can partition [0, 1] into digjoint subintervals (4;; : j € I)
such that
|Aij| = pij.-

Now define functions

Go :[0,1] — 1,
G:Ix[0,1]—1

by
Go(u) =1 ifue A,
G(i, u) =j ifue A”
Suppose that Uy, Uy, Us, ... is a sequence of independent random variables, uni-

formly distributed on [0, 1], and set

Xo = Go(Uy),
Xn+1 = G(Xn,Unq1) forn >0,

Then

P(Xo=1i) =P(Us € A;) = A,
IED(Xvn+1 = z.n+1 | Xo =ig,...,Xpn = ln) = IP)(Un+1 € Ainin+1) = Pining

0 (Xn)n>o0 is Markov(A, P).

This simple procedure may be used to investigate empirically those aspects of
the behaviour of a Markov chain where theoretical calculations become infeasible.

The remainder of this section is devoted to one application of the simulation of
Markov chains. It is the application which finds greatest practical use, especially in
statistics, statistical physics and computer science, known as Markov chain Monte
Carlo. Monte Carlo is another name for computer simulation so this sounds no
different from the procedure just discussed. But what is really meant is simulation
by means of Markov chains, the object of primary interest being the invariant
distribution of the Markov chain and not the chain itself. After a general discussion
we shall give two examples.

The context for Markov chain Monte Carlo is a state-space in product form
=] Sm
meA

where A is a finite set. For the purposes of this discussion we shall also assume
that each component Sy, is a finite set. A random variable X with values in I is
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then a family of component random variables (X(m) m € A), where, for each
site m € A, X(m) takes values in Sy,.

We are given a distribution = = (@; : ¢ € T), perhaps up to an unknown constant
multiple, and it is desired to compute the number

> ol (5.13)

i€l

for some given function f = (f; : @ € I). The essential point to understand is
that A is typically a large set, making the state-space I very large indeed. Then
certain operations are computationally infeasible — performing the sum (5.13) state
by state for a start.

An alternative approach would be to simulate a large number of independent
random variables X1,..., X, in I, each with distribution 7, and to approximate

(5.13) by
% > F(XR).
k=1

The strong law of large numbers guarantees that this is a good approximation as
n — oo and, moreover, one can obtain error estimates which indicate how large to
make n in practice. However, simulation from the distribution 7 is also difficult,
unless & has product form

m(x) = H T (Jz(m))

meA

For recall that a computer just simulates sequences of independent U[0, 1] random
variables. When 7 does not have product form, Markov chain Monte Carlo is
sometimes the only way to simulate samples from .

The basic 1dea i1s to simulate a Markov chain (Xn)nzo, which is constructed to
have invariant distribution 7. Then, assuming aperiodicity and irreducibility, we
know, by Theorem 1.8.3, that as n — oo the distribution of X,, converges to .
Indeed, assuming only irreducibility, Theorem 1.10.2 shows that

1

F(Xe) = i

0 i€l

n

S|
ol
1l

with probability 1. But why should simulating an entire Markov chain be easier
than simulating a simple distribution #7 The answer lies in the fact that the
state-space is a product.

Each component Xg(m) of the initial state Xy is a random variable in Sp,. Tt
does not matter crucially what distribution Xy is given, but we might, for example,
make all components independent. The process (Xj),>0 is made to evolve by
changing components one site at a time. When the chosen site is m, we simulate
a new random variable X, 1(m) with values in S,, according to a distribution
determined by X, and for k # m we set X, 41(k) = X,,(k). Thus at each step we
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have only to simulate a random variable in S,,, not one in the much larger space

I

Let us write i ~ j if 7 and j agree, except possibly at site m. The law for
simulating a new value at site m is described by a transition matrix P(m), where

pij(m) =0 unless i ~ g

We would like 7 to be invariant for P(m). A sufficient condition is that the detailed
balance equations hold: thus for all 7, j we want

mipij(m) = mjpji(m).

There are many possible choices for P(m) satisfying these equations. Indeed, given
any stochastic matrix R(m) with

rij(m) =0 unless i ~ j
we can determine such a P(m) by
mipij(m) = (mirg;(m)) A (m75(m))

for ¢ # j, and then
pii(m) =1— sz'j(m) > 0.
J#i
This has the following interpretation: if X,, = ¢ we simulate a new random variable
Y, so that ¥,, = j with probability r;;(m), then if ¥, = j we set

% B { Y,  with probability (Wirij(m)/wj rji(m)) Al
ntl X, otherwise.

This is called a Hastings algorithm.

There are two commonly used special cases. On taking

-1
rij(m) = (Z 7rk> T for i ~ j
ki

we also find

pij(m) = (Z ’;TZ') T for i ~ j.
)
So we simply resample X, (m) according to the conditional distribution under =,

given the other components. This is called the Gibbs sampler. It is particularly
useful in Bayesian statistics.

On taking r;;(m) = rj;(m) for all ¢ and j we find

pij(m) = ((7rj/7ri) A 1)rij(m) for i~ j,i#j.
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This is called a Metropolis algorithm. A particularly simple case would be to take
rij(m) = 1/(Nym —1)  fori~ji#j

where N,;, = |S;,|. This amounts to choosing another value j,, at site m uniformly
at random; if 7; > @;, then we adopt the new value, whereas if 7; < 7; we adopt
the new value with probability =; /m;.

We have not yet specified a rule for deciding which site to visit when. In practice
this may not matter much, provided we keep returning to every site. For definite-
ness we mention two possibilities. We might choose to visit every site once and then
repeat, generating a sequence of sites (my),>0. Then (m,, X,),>0 is a Markov
chain in A x I. Alternatively, we might choose a site randomly at each step. Then
(Xn)n>o is itself a Markov chain with transition matrix

P=A"" Y P(m).

meA

We shall stick with this second choice, where the analysis is simpler to present. Let
us assume that P is irreducible, which is easy to ensure in the examples. We know
that

mpij(m) = mip;i(m)
for all m and all 7, 7, so also
TiPij = TjPji

and so 7 is the unique invariant measure for P. Hence, by Theorem 1.10.2, we have

3
|
—

J(Xy) — E"Tifi

0 i€l

S|
ol
1l

as n — oo with probability 1. Thus the algorithm works eventually. In practice
one is concerned with how fast it works, but useful information of this type cannot
be gained in the present general context. Given more information on the structure
of S,, and the distribution # to be simulated, much more can be said. We shall not
pursue the matter here. It should also be emphasised that there is an empirical side
to simulation: with due caution informed by the theory, the computer output gives
a good idea of how well we are doing. For further reading we recommend Stochastic
Simulation by B.D. Ripley (Wiley, Chichester, 1987), and Markov Chain Monte
Carlo in practice by W.R. Gilks, S. Richardson and D.J. Spiegelhalter (Chapman
and Hall, London, 1996). The recent survey article Bayesian computation and
stochastic systems by J. Besag, P. Green, D. Higdon and K. Mengersen (Statistical
Science, 10 (1), pp.3-40, 1995) contains many interesting references. We finish
with two examples.

Example 5.5.1 (Bayesian statistics)

In a statistical problem one may be presented with a set of independent observations
Y1,...,Y,, which it is reasonable to assume are normally distributed, but with
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unknown mean p and variance 77!, One then seeks to draw conclusions about p
and 7 on the basis of the observations. The Bayesian approach to this problem
is to assume that g and 7 are themselves random variables, with a given prior
distribution. For example, we might assume that

p~N(o,65"), 7~ TI(ao, ),

that is to say, p is normal of mean 6y and variance qSEl, and 7 has gamma dis-
tribution of parameters oy and Bq. The parameters 6y, ¢o, ao and Fy are known.
Then the prior density for (u,7) is given by

m(p,7) o exp{—po(u — 00)* /2} 7~ " exp{—fFor}.

The posterior density for (p,7), which is the conditional density given the ob-
servations, is then given by Bayes’ formula

m(p, 7| y) o< w(p, T)f(y | gy T)
x exp{—¢o(p — 60)2/2} exp {—T Z(yl — u)2/2} roo=14n/2 exp{—0FoT}.

Note that the posterior density is no longer in product form: the conditioning
has introduced a dependence between p and 7. Nevertheless, the full conditional
distributions still have a simple form

w(u |y, 7) < exp{—¢o(p — 0)?/2} exp {—T > (wi — #)2/2} ~ N(0n,¢77),

i=1

i=1

(T |y, n) x reo=14n/2 exp {—7‘ (ﬁo + Z(yl — p)2/2> } ~ T(an, Bn)

where

On = (¢090+T2yi) [(¢o+nT), n = o+ nr,

i=1

an=a0+n/2, Bu=PFo+ Y (vi—n?/2
i=1

Our final belief about p and 7 is regarded as measured by the posterior density.
We may wish to compute probabilities and expectations. Here the Gibbs sampler
provides a particularly simple approach. Of course, numerical integration would
also be feasible as the dimension is only two. To make the connection with our
general discussion we set

I'=51 xS =R x[0,00).

We wish to simulate X = (u, 7) with density w(u, 7 | y). The fact that R and
[0,00) are not finite sets does not affect the basic idea. In any case the computer
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will work with finite approximations to R and [0, c0). First we simulate Xg, say
from the product form density w(u, 7). At the kth stage, given Xy = (pr, 1), we
first simulate pg4q from @(p | y, 7¢) and then 7,41 from «(7 | y, pg41), then set
Xit+1 = (pr+1, Th41). Then (Xi)r>o0 is a Markov chain in I with invariant measure
(@, 7 | y), and one can show that

=
z Zf(X]) — /f(.r)w(x | y)dz as k — oo
=0 !

with probability 1, for all bounded continuous functions f : I — R. This is not
an immediate consequence of the ergodic theorem for discrete state-space, but you
may find it reasonable at an intuitive level, with a rate of convergence depending
on the smoothness of 7 and f.

We now turn to an elaboration of this example where the Gibbs sampler is indis-
pensible. The model consists of m copies of the preceding one, with different means
but a common variance. Thus there are mn independent observations Y;;, where
t=1,...n,and j = 1,...,m, normally distributed, with means y; and common

variance 77!, We take these parameters to be independent random variables as

before, with
[y NN(60,¢61), TNF(CVO;ﬂO)'

Let us write g = (g1,. .., ptn). The prior density is given by
m
(@, T) x exp { —¢dq Z(,uj —00)?/2 } T~ Lexp{—By7}

ji=1

and the posterior density is given by
m
m(p, 7| y) o exp { —do Z(Mj — 0)*/2
j=1

X exp —TZZ(yU — pj)%)2 p T M 2 exp L Bor).

i=1j=1
Hence the full conditional distributions are
ﬂ'(ﬂj | Y, T) ~ N(gjﬂa ¢7’_Ll)’ ﬂ-(T | y,u) ~ F(anaﬂn)

where
Ojn = (éoﬂe +T2yij) [(¢o+nT), ¢n=do+nr,
i=1

an=ag+mn/2, Bo=PFo+ Y Y (v —ny)°/2

i=1j=1
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We can construct approximate samples from m(u, 7 | y), just as in the case m = 1
discussed above, by a Gibbs sampler method. Note that, conditional on 7, the
means u;, for 5 = 1,...,m, remain independent. Thus one can update all the
means simultaneously in the Gibbs sampler. This has the effect of speeding con-
vergence to the equilibrium distribution. In cases where m is large, numerical
integration of m(u, 7 | y) is infeasible, as is direct simulation from the distribution,
so the Markov chain approach is the only one available.

Example 5.5.2 (Ising model and image analysis)

Consider a large box A = Ay in Z?
A={-N,...,—1,0,1,...,N}?
with boundary A = Ay\Ay—1, and the configuration space
I={-1,1}

For z € A define ,
H(z) =1 (a(m) - z(m))

where the sum is taken over all pairs {m, m’} C A with |m — m/| = 1. Note that
H(z) is small when the values taken by z at neighbouring sites are predominantly
the same. We write

I"={ze€l:z(m)=1 forallme A}
and for each § > 0 define a probability distribution (ﬂ'(l’) tx € I+) by

7(r) x e PH(),
As | 0 the weighting becomes uniform, whereas, as # | co the mass concentrates
on configurations  where H(z) is small. This is one of the fundamental models
of statistical physics, called the Ising model. A famous and deep result of Onsager
says that if X has distribution =, then

Jim E(X(0)) = [(1 - (sinh28)*) F]"/%,
In particular, if sinh 28 < 1, the fact that X is forced to take boundary values 1
does not significantly affect the distribution of X(0) when N is large, whereas if
sinh 28 > 1 there is a residual effect of the boundary values on X(0), uniformly in
N.

Here we consider the problem of simulating the Ising model. Simulations may
sometimes be used to guide further developments in the theory, or even to detect
phenomena quite out of reach of the current theory. In fact, the Ising model is
rather well understood theoretically; but there are many related models which
are not, where simulation is still possible by simple modifications of the methods
presented here.
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First we describe a Gibbs sampler. Consider the sets of even and odd sites

At = {(m1,m2) € A : my + my is even},
A7 ={(m1,mz) € A : my + my is odd}

and for z € I set
= (I(m) ‘m € Ai).

We can exploit the fact that the conditional distribution w(z* | z7) has product
form
m(zt | 27) H ghalm)sim)
meAT\OA

where, for m € AT\9A
s(m) = Z z=(m).

|m!=m|=1

Therefore, it is easy to simulate from w(z* | 27) and likewise from w(z~ | z¥).
Choose now some simple initial configuration Xy in IT. Then inductively, given
X, = @, simulate firstly X:_I_l with distribution #(- | #7) and then given X,T_I_l =
xt, simulate X, with distribution «(- | z*). Then according to our general
discussion, for large n, the distribution of X, is approximately #. Note that we
did not use the value of the normalizing constant

- Z e~ BH(2)

zelt

which is hard to compute by elementary means when N is large.

An alternative approach is to use a Metropolis algorithm. We can again exploit
the even/odd partition. Given that X, = z, independently for each m € AT\0A,
we change the sign of X;}(m) with probability

p(m, I) = (ﬂ'(i’)/ﬂ'(l‘)) Al = e2ﬁ“3(m)5(m) Al

where # ©~ z with #(m) = —z(m). Let us call the resulting configuration Y,. Next
we apply the corresponding transformation to Y, (m) for the odd sites m € A~\JA,
to obtain X, ;1. The process (Xn)nZO is then a Markov chain in 7t with invariant
distribution .

Both methods we have described serve to simulate samples from 7; there is little
to choose between them. Convergence is fast in the subcritical case sinh 28 < 1,
where 7 has an approximate product structure on large scales.

In a Bayesian analysis of two-dimensional images, the Ising model is sometimes
used as a prior. We may encode a digitized image on a two-dimensional grid as
a particular configuration (.t(m) :m € A) € I, where z(m) = 1 for a white pixel
and z(m) = —1 for a black pixel. By varying the parameter 8 in the Ising model,
we vary the tendency of black pixels to clump together; the same for white pixels.



5.5 Markov chain Monte Carlo 191

Thus B is a sort of texture parameter, which we choose according to the sort of
image we expect, thus obtaining a prior m(z). Observations are now made at each
site which record the true pixel, black or white, with probability p € (0,1). The
posterior distribution for X given observations Y is then given by

m(x | y) o 7(2)f(y | &) ox e PHE palzw)(] — pydlzy)

where a(z,y) and d(z,y) are the numbers of sites at which z and y agree and
disagree respectively. ‘Cleaned-up’ versions of the observed image Y may now be
obtained by simulating from the posterior distribution. Although this is not exactly
the Ising model, the same methods work. We describe the appropriate Metropolis
algorithm: given that X,, = z, independently for each m € At\JA, change the
sign of X} (m) with probability

p(m,z,y) = (7(@ | y)/x(z | y)) A1
— =282 0mm) (1 — p)/p)" ™)

where & ~ z with #(m) = —z(m). Call the resulting configuration X, +1/2. Next
apply the corresponding transformation to Xn+1/2 for the odd sites to obtain X, 4+1.
Then (X, )n>0 is a Markov chain in It with invariant distribution 7 (- | y).
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Appendix: probability and measure

Section 6.1 contains some reminders about countable sets and the discrete version
of measure theory. For much of the book we can do without explicit mention of
more general aspects of measure theory, except an elementary understanding of
Riemann integration or Lebesgue measure. This is because the state-space is at
worst countable. The proofs we have given may be read on two levels, with or
without a measure-theoretic background. When interpreted in terms of measure
theory, the proofs are intended to be rigorous. The basic framework of measure and
probability is reviewed in Sections 6.2 and 6.3. Two important results of measure
theory, the monotone convergence theorem and Fubini’s theorem, are needed a
number of times: these are discussed in Section 6.4. One crucial result which
we found impossible to discuss convincingly without measure theory is the strong
Markov property for continuous-time chains. This is proved in Section 6.5. Finally,
in Section 6.6, we discuss a general technique for determining probability measures
and independence in terms of w-systems, which are often more convenient than
o-algebras.

6.1 Countable sets and countable sums

A set I is countable if there is a bijection f: {1,...,n} — I for some n € N, or a
bijection f : N — I. In either case we can enumerate all the elements of 7

f11f2af31'~'

where in one case the sequence terminates and in the other it does not. There would
have been no loss in generality had we insisted that all our Markov chains had state-
space N or {1,...,n} for some n € N: this just corresponds to a particular choice
of the bijection f.



