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Abstract

Suppose that (X,Y, Z) is a random walk in Z3 that moves in the following way: on the first
visit to a vertex only Z changes by ±1 equally likely, while on later visits to the same vertex
(X,Y ) performs a two-dimensional random walk step. We show that this walk is transient thus
answering a question of Benjamini, Kozma and Schapira. One important ingredient of the proof
is a dispersion result for martingales.
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1 Introduction

In this paper we study the following self-interacting random walk (X,Y, Z) in Z3. On the first visit
to a vertex only Z changes by ±1 equally likely, while on later visits to the same vertex (X,Y )
performs a two dimensional random walk step, i.e. it changes by (±1, 0) or (0,±1) all with equal
probability. This walk was conjectured in [7] to be transient.

This model fits into the wider class of excited random walks which were first introduced by Ben-
jamini and Wilson [8]. They study walks that on the first visit to a vertex in Zd have a bias in one
direction while on later visits they make a simple random walk step. There has been a lot of active
research in this type of model; see the recent survey [11] and the references therein.

Another process of this flavour was analysed in [15]; suppose that µ1, µ2 are two zero-mean measures
in R3 and consider any adapted rule for choosing between µ1 and µ2. By adapted rule, we mean
that the next choice every time depends on the history of the process up to this time. In [15] it
was proved that if each measure is supported on the whole space, then for any adapted rule, the
resulting walk in R3 is transient. In [16] transience and recurrence properties and weak laws of
large numbers were also proved for specific choices of one-dimensional measures; for instance when
µ1 is the distribution of simple random walk step and µ2 the symmetric discrete Cauchy law.

A larger class of such processes are the so-called self-interacting random walks, which are not
Markovian, since the next step depends on the whole history of the process up to the present time.
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For instance the edge or vertex reinforced random walks have attracted a lot of attention, see
e.g. [2, 4, 9, 13, 14, 17, 18, 19].

Theorem 1.1. Let Wt = (Xt, Yt, Zt) be a random walk in Z3 such that on the first visit to a
vertex only Zt changes to Zt ± 1 equally likely, while on later visits to a vertex (Xt, Yt) makes a
two dimensional simple random walk step. Then W is transient, i.e. ‖Wt‖ → ∞ as t→∞ almost
surely.
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Figure 1: The rectangles [tk, n]× [−hk, hk] and the graph of M

We now give a quick overview of the proof of Theorem 1.1. By conditioning on all the jumps of the
two dimensional process (Y,Z) and looking at the process X only at the times when (Y,Z) moves,
we obtain a martingale M . Then we need to obtain estimates for the probability that M is at 0
at time n so that when multiplied by 1/n it should be summable. In Section 2 we state and prove
a proposition that gives estimates for a martingale to be at 0 at time n when it satisfies certain
assumptions. We now state a simpler form of this proposition.

Corollary 1.2. Let M be a martingale satisfying almost surely

E
[
(Mk+1 −Mk)

2
∣∣ Fk] ≥ 1 and |Mk+1 −Mk| ≤ (log n)a,

for all k ≤ n and some a < 1. Then there exists a positive constant c, such that

P(Mn = 0) ≤ exp
(
−c(log n)1−a

)
.

We remark that related results were recently proved by Alexander in [1] and by Armstrong and
Zeitouni in [3].

In order to prove Corollary 1.2 we use the same approach as in [10]. More specifically, we consider
the rectangles as in Figure 1, where the widths decay exponentially and tk = n − n/2k for k <
log2(n). It is clear that {Mn = 0} only if the graph of M hits all the rectangles. Note that it suffices
to show that for most rectangles conditionally on hitting them, the probability that the graph of
M does not hit the next one is lower bounded by c/(log n)a. This is the content of Proposition 2.1
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in Section 2. In order to control the probabilities mentioned above, we also have to make sure
that the two dimensional process visits enough new vertices in most intervals [tk, tk+1]. This is the
content of Proposition 3.4 that we state and prove in Section 3.

In Section 4 we prove the following lemma, which shows that there is no dispersion result in the
case a = 1, with general hypotheses like in Corollary 1.2.

Lemma 1.3. There exists a positive constant c, such that for any n, there exists a martin-
gale (Mk)k≤n sastisfying almost surely

E
[
(Mk+1 −Mk)

2
∣∣ Fk] ≥ 1 and |Mk+1 −Mk| ≤ log n,

for all k ≤ n, yet
P(Mn = 0) ≥ c.

Notation: For functions f, g we write f(n) . g(n) if there exists a universal constant C > 0 such
that f(n) ≤ Cg(n) for all n. We write f(n) & g(n) if g(n) . f(n). Finally we write f(n) � g(n) if
both f(n) . g(n) and f(n) & g(n). We write B(x, r) to denote the ball in the L1- metric centered
at x of radius r. Note also that in the rest of the paper we use c for a constant whose value may
change from line to line.

2 Martingale defocusing

In this section we state and prove a dispersion result for martingales. Then in Section 3 we use it
to prove our main result, Theorem 1.1 when a = 1/2.

We call the quadratic variation of a martingale M , the process (Vt)t≥1 defined by

Vt =
t∑

`=1

E
[
(M` −M`−1)

2
∣∣ F`−1] .

Proposition 2.1. Let ρ > 0 be given. There exists a positive constant c and n0 ≥ 1 such that the
following holds for any a ∈ (0, 1). Suppose that M is a martingale with quadratic variation V and
suppose that (Gk)k is an i.i.d. sequence of geometric random variables with mean 2 satisfying

|Mk+1 −Mk| ≤ Gk ∀k. (2.1)

For each 1 ≤ k < log2(n) we let tk = n− n/2k and

Ak =
{
Vtk+1

− Vtk ≥ ρ(tk+1 − tk)/(log n)2a
}
.

Suppose that for some N ≥ 1 and 1 ≤ k1 < . . . < kN < log2(n)/2, it holds

P

(
N⋂
i=1

Aki

)
= 1. (2.2)

Then we have for all n ≥ n0

P(Mn = 0) ≤ exp (−cN/(log n)a) .

Remark 2.2. We note that the choice of mean 2 for the geometric random variables in (2.1) is
arbitrary. Any other value would be fine as well.
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Proof of Corollary 1.2. If we divide the martingale M by (log n)a, then it satisfies the hypothe-
ses of Proposition 2.1 with N = log2(n)/2, and hence the statement of the corollary follows.

Before proving Proposition 2.1 we state and prove a preliminary result that will be used in the
proof later.

Lemma 2.3. There exists ρ > 0 such that the following holds. Suppose that M is a martingale
satisfying assumption (2.1) of Proposition 2.1. Let m < ` and h > log(`−m+ 1) be given and let
τ = min{t ≥ m : |Mt −Mm| ≥ h}. Suppose that P

(
V` − Vm ≥ h2/ρ

)
= 1. Then we have almost

surely

P(τ ≤ ` | Fm) ≥ 1

2
.

Proof. It is well known that the process (M2
t − Vt) is a martingale. Since τ ∧ ` ≥ m is a stopping

time, by the optional stopping theorem we get

E
[
M2
τ∧` − Vτ∧`

∣∣ Fm] = M2
m − Vm. (2.3)

Now we claim that

E
[
M2
τ∧` −M2

m

∣∣ Fm] . h2. (2.4)

Indeed we can write

E
[
M2
τ∧` −M2

m

∣∣ Fm] = E
[
(Mτ∧` −M(τ−1)∧` +M(τ−1)∧` −Mm)2

]
≤ 2E

[
(Mτ∧` −M(τ−1)∧`)

2
]

+ 2h2,

where the last inequality follows from the definition of τ . In order to bound the first term in the
right hand side above, we use (2.1) and the fact that τ ≥ m. This way we get

|Mτ∧` −M(τ−1)∧`| ≤ max
m≤t≤`

|Gt|.

So we now obtain

E
[
(Mτ∧` −M(τ−1)∧`)

2
∣∣ Fm] . log(`−m+ 1)2,

which proves our claim (2.4), using also the hypothesis h > log(` −m + 1). Since by assumption
we have P

(
V` − Vm ≥ h2/ρ

)
= 1, we obtain that almost surely

E[Vτ∧` − Vm | Fm] ≥ E[(V` − Vm)1(τ ≥ `) | Fm] ≥ h2

ρ
P(τ ≥ ` | Fm) .

This together with (2.3) and (2.4) and by taking ρ sufficiently small proves the lemma.

We are now ready to give the proof of Proposition 2.1.

Proof of Proposition 2.1. We will argue as in [10], by saying that in order for Mn to be at 0,
the graph of M , i.e. the process ((t,Mt))t≤n, has to cross the space-time rectangles Hk, for all
k = 1, . . . , log2(n), which are defined by

Hk := [tk, n]× [−hk, hk] with hk := ρ

√
tk+1 − tk
(log n)2a

. (2.5)
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We now define
σk = inf{t ≥ tk : |Mt| ≥ hk}

For each k ≤ log2(n) such that P(Ak) = 1 we can apply Lemma 2.3 with m = tk, ` = tk+1 and
h = 2hk if n is sufficiently large so that h > log(`−m+ 1). We thus deduce that for ρ sufficiently
small and for all n > n0 we have almost surely

P(σk ≤ tk+1 | Ftk) ≥ 1

2
. (2.6)

Next we claim that a.s. conditionally on Fσk the martingale has probability of order 1/(log n)a,
to reach level ±hk(log n)a/ρ2 before returning below level ±hk/

√
2 = ±hk+1 (if at least one of

these events occurs before time n). Indeed assume for instance that Mσk ≥ hk. Then the optional
stopping theorem shows that on the event Ek = {Mσk ≥ hk} ∩ {σk ≤ n} we have

hk ≤Mσk = E[MT1∧T2∧n | Fσk∧n] , (2.7)

where
T1 := inf{t ≥ σk : |Mt| ≥ hk(log n)a/ρ2},

and
T2 := inf{t ≥ σk : |Mt| ≤ hk/

√
2}.

We deduce from (2.7) that on Ek

hk ≤ E[MT11(T1 < T2 ∧ n) | Fσk ] +
hk(log n)a

ρ2
P(n < T1 ∧ T2 | Fσk) +

hk√
2
.

Then by using again the bound (2.1) we get that on Ek

E[MT11(T1 < T2 ∧ n) | Fσk ] ≤ hk(log n)a

ρ2
P(T1 < T2 ∧ n | Fσk) + E

[
max
tk≤t≤n

Gt

]
≤ hk(log n)a

ρ2
P(T1 < T2 ∧ n | Fσk) + c1 log(n− tk + 1),

where c1 is a positive constant. It follows that if n is large enough, then on Ek

P(T1 ∧ n < T2 | Fσk) &
1

(log n)a
.

Similarly we get the same inequality with the event {Mσk ≥ hk} replaced by {Mσk ≤ −hk}, and
hence we get that almost surely

P(T1 ∧ n < T2 | Fσk)1(σk ≤ n) &
1

(log n)a
1(σk ≤ n), (2.8)

which proves our claim. We now notice that on the event {tk ≤ T1 ≤ n} we have by Doob’s
maximal inequality

P
(

sup
i≤n−tk

|Mi+T1 −MT1 | ≥ hk(log n)a/(2ρ2)

∣∣∣∣ FT1) .
n− tk

(hk(log n)a/ρ2)2
< c1, (2.9)

where c1 is a constant that we can take smaller than 1 by choosing ρ small enough. Note that we
used again (2.1) in order to bound the L2 norm of the increments of the martingale M .
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Next we define a sequence of stopping times, which are the hitting times of the space-time rectan-
gles (Hk) defined in (2.5). More precisely, we let s0 = 0 and for i ≥ 1 we let

si = min{t > si−1 : (t,Mt) ∈ Hi}.

Thus for each k < log2(n) such that P(Ak) = 1 by using (2.6), (2.8) and (2.9), we get that on the
event {sk−1 ≤ n}

P
(
sk > n

∣∣ Fsk−1

)
&

1

(log n)a
.

Using the assumption that the event ∩Ni=1Aki happens almost surely we obtain

P(Mn = 0) ≤ P(sk1 , . . . , skN ≤ n) ≤
(

1− c

(log n)a

)N
≤ exp (−cN/(log n)a) ,

for a positive constant c, and this concludes the proof.

3 Proof of transience

In this section we prove Theorem 1.1. We first give an equivalent way of viewing the random walkW .
Let ξ1, ξ2, . . . be i.i.d. random variables taking values (0, 0,±1) equally likely. Let ζ1, ζ2, . . . be i.i.d.
random variables taking values (±1, 0, 0), (0,±1, 0) all with equal probability, and independent of
the (ξi)i. Assume that (W0, . . . ,Wt) have been defined, and set

rW (t) = #{W0, . . . ,Wt}.

Then

Wt+1 =

{
Wt + ξrW (t) if rW (t) = rW (t− 1) + 1

Wt + ζt−rW (t) otherwise
.

To prove Theorem 1.1 it will be easier to look at the process at the times when the two dimensional
process moves. So we define a clock process (τk)k≥0 by τ0 = 0 and for k ≥ 0,

τk+1 = inf {t > τk : (Xt, Yt) 6= (Xτk , Yτk)} = inf {t > τk : t− rW (t) = k}.

Note that rW (0) = 1 and τk < ∞ a.s. for all k. Observe that by definition the process Ut :=
(Xτt , Yτt) is a 2d-simple random walk, and that rW (τt) = τt − t+ 1. Note that

Zt =

rW (t)−1∑
i=1

〈ξi, (0, 0, 1)〉.

We set Ft = σ(ξ1, . . . , ξτt−t), so that Zτt is Ft-measurable for all t.

We call Q the law of the process U . We denote by PU () the law of the process W conditionally on
the whole process U , or in other words on the whole sequence (ζi)i≥1. We write P = Q × PU for
the law of the overall process W .

In the following claim we show that the process Z observed only at the times when the two-
dimensional process moves, is a martingale.

Claim 3.1. Let Mt = Zτt. Then Q-a.s. we have that (Mt) is an (Ft)-martingale under PU .
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Proof. We already noticed that Mt is adapted to Ft for all t. Now since the ξi’s are i.i.d. and have
mean 0 it follows from Wald’s identity that

EU
[
Zτt+1

∣∣ Ft] = EU

[
Zτt +

τt+1−t−1∑
i=τt−t+1

〈ξi, (0, 0, 1)〉
∣∣∣∣∣ Ft

]
= Zτt ,

since τt+1 − t− 1 is the first time after τt − t+ 1 when we visit an already visited site, and is thus
a stopping time.

Remark 3.2. We note that the jumps of the martingale are stochastically dominated by geometric
random variables. More precisely, we can couple the process M (or W ) with a sequence (Gt)t≥0 of
i.i.d. geometric random variables with parameter 1/2, such that

|Mt+1 −Mt| ≤ Gt for all t ≥ 0. (3.1)

Before proceeding, we give some more definitions. For t ≥ 0, set

rU (t) = #{U0, . . . , Ut},

i.e. rU (t) is the cardinality of the range of the two-dimensional process up to time t. We also set
for t ≥ 0

Vt :=

t∑
`=1

EU
[
(M` −M`−1)

2
∣∣ F`−1] .

Claim 3.3. Suppose that U` is a fresh site, i.e. U` /∈ {U0, U1, . . . , U`−1}. Then

EU
[
(M`+1 −M`)

2
∣∣ F`] ≥ 2.

Proof. Notice that when U` is a fresh site, then M`+1 −M` can be written as

M`+1 −M` =

τ∑
i=1

λi,

where (λi)i are i.i.d. random variables taking values ±1 equally likely and

τ = inf{k ≥ 2 : (λk−1, λk) ∈ {(−1,+1), (+1,−1)}}.

Then by the optional stopping theorem we deduce

EU
[
(M`+1 −M`)

2
∣∣ F`] = E

( τ∑
i=1

λi

)2
 = E[τ ] ≥ 2,

since τ ≥ 2 by definition.

Before proving Theorem 1.1 we state a proposition that we prove later, which combined with
the above claim guarantees that the quadratic variation V of the martingale M satisfies assump-
tion (2.2) of Proposition 2.1. The following proposition only concerns the 2d-simple random walk.
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Proposition 3.4. For k ≥ 1 we let tk = n− n/2k and for ρ > 0 define

K =
{

1 ≤ k ≤ (log n)3/4 : rU (tk+1)− rU (tk) ≥ ρ(tk+1 − tk)/ log n
}
.

Then there exist positive constants α, c and ρ∗ such that for all ρ < ρ∗

P
(

#K ≤ ρ(log n)3/4
∣∣∣ Un = 0

)
. exp(−c(log n)α).

Proof of Theorem 1.1. Let K and ρ be as in Proposition 3.4. Note that K is completely deter-
mined by the 2d-walk. Setting A = {#K ≥ ρ(log n)3/4} we then have

P(Un = Mn = 0) = E[1(Un = 0)PU (Mn = 0)1(A)] + E[1(Un = 0)PU (Mn = 0)1(Ac)] . (3.2)

On the event A, using Claim 3.3 we get that there exist k1, . . . , kρ(logn)3/4 ∈ K such that

PU

ρ(logn)3/4⋂
i=1

Aki

 = 1,

where the events (Ai) are as defined in Proposition 2.1. We can now apply this proposition (with
a = 1/2) to obtain

PU (Mn = 0)1(#K ≥ ρ(log n)3/4) . exp(−c(log n)1/4).

Therefore from (3.2) we deduce

P(Un = Mn = 0) .
1

n
exp(−c(log n)1/4) +

1

n
exp(−c(log n)α),

where α is as in Proposition 3.4. Since this last upper bound is summable in n, this proves that 0
is visited only finitely many times almost surely. Exactly the same argument would work for any
other point of Z3, proving that W is transient.

Before proving Proposition 3.4 we state and prove a standard preliminary lemma and a corollary
that will be used in the proof.

Lemma 3.5. Let U be a simple random walk in Z2 starting from 0. Then there exists a positive
constant c, such that for all t ≤ n log n satisfying log(n/t) . (log n)3/4 we have

P
(

#{U0, . . . , Un} ∩ B(0,
√
t) ≥ t

(log n)1/16

)
. exp(−c(log n)1/16).

Proof. To prove this we first decompose the path into excursions that the random walk makes
across B(0, 2

√
t) \ B(0,

√
t) before time n. More precisely define σ0 = 0, and for i ≥ 0,

σ′i = inf{k ≥ σi : Uk /∈ B(0, 2
√
t)},

σi+1 = inf{k ≥ σ′i : Uk ∈ B(0,
√
t)}.

Let
N := max{i : σi ≤ n},
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be the total number of excursions before time n, and for each i ≤ N , let

Ri := #{Uσi , . . . , Uσ′i},

be the number of points visited during the i-th excursion. Of course we have

#{U0, . . . , Un} ∩ B(0,
√
t) ≤

N∑
i=1

Ri. (3.3)

Note that every time the random walk is on the boundary of the ball B(0, 2
√
t), it has probability of

order 1/(log(n/t)+4 log log n) to hit the boundary of the ball B(0,
√
n log n) before hitting B(0,

√
t)

(see for instance [12]). If T is the first exit time from B(0,
√
n(log n)2), then

P(T ≤ n) . e−c(logn)
4
, (3.4)

where c is a positive constant. On the event {T ≥ n}, it is easy to see that N is dominated by a
geometric random variable with mean of order log(n/t). We thus get

P
(
N ≥ (log(n/t) + 4 log log n)(log n)1/16

)
≤ P(T ≤ n) + P

(
N ≥ (log(n/t) + 4 log log n)(log n)1/16, T ≥ n

)
(3.5)

. exp
(
−c(log n)4

)
+ exp

(
−c(log n)1/16

)
. exp

(
−c(log n)1/16

)
. (3.6)

Since we have Ex[σ′i − σi] . t for all x ∈ B(0, 2
√
t), by using the Markov property we can deduce

P
(
σ′i − σi ≥ t(log n)1/16

)
≤ exp(−c(log n)1/16).

Moreover, it follows from [6, Lemma 4.3] and the fact that log n � log t that

P
(

#{Uσi , . . . , Uσi+t(logn)1/16} ≥
t

(log n)7/8

)
≤ exp(−c(log n)1/16).

Combining the last two inequalities, we get that for any i,

P
(
Ri ≥

t

(log n)7/8

)
≤ 2 exp(−c(log n)1/16),

where c is a positive constant. Using the assumption that log(n/t) . (log n)3/4 together with (3.3)
and (3.5) concludes the proof of the lemma.

Corollary 3.6. Let U be a simple random walk in Z2, let t ≤ n satisfying log(n/(n−t)) . (log n)3/4

and let ε < 1/32. Then there exists a positive constant c such that

P

(
#{U0, . . . , Ut} ∩ B(0, (log n)ε

√
n− t) ≥ n− t

(log n)
1
16
−2ε

∣∣∣∣∣ Un = 0

)
. exp

(
−c(log n)1/16

)
.

Proof. First we use the rough bound:

#{U0, . . . , Ut} ∩ B(0, (log n)ε
√
n− t) ≤ #{U0, . . . , Un/2} ∩ B(0, (log n)ε

√
n− t)

+ #{Un/2, . . . , Un} ∩ B(0, (log n)ε
√
n− t).
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We now note that if A is an event only depending on the first n/2 steps of the random walk, then
we have

P(A | Un = 0) =
P(Un = 0 | A)P(A)

P(Un = 0)
. P(A) , (3.7)

where the last inequality follows from the local central limit theorem. By reversibility we obtain

P

(
#{Un/2, . . . , Un} ∩ B(0, (log n)ε

√
n− t) ≥ n− t

2(log n)
1
16
−2ε

∣∣∣∣∣ Un = 0

)

= P

(
#{U0, . . . , Un/2} ∩ B(0, (log n)ε

√
n− t) ≥ n− t

2(log n)
1
16
−2ε

∣∣∣∣∣ Un = 0

)
. (3.8)

The statement now readily follows by combining Lemma 3.5 with (3.7) and (3.8).

Proof of Proposition 3.4. Let us consider the events

Ak :=

{
rU (tk+1)− rU (tk) ≥ ρ

tk+1 − tk
log n

}
,

with ρ > 0 some constant to be fixed later. Let also ε < 1/48,

Bk =

{
#{U0, . . . , Utk} ∩ B(0, (log n)ε

√
n− tk) ≤

tk+1 − tk
(log n)

1
16
−2ε

}
,

and
B̃k := Bk ∩

{
Utk ∈ B(0,

√
n− tk)

}
.

Set for k = 1, . . . , (log n)3/4,
Gk = σ(U0, . . . , Utk),

and note that B̃k ∈ Gk.
Claim 3.7. For any k ≤ (log n)3/4 we have almost surely

P(Ack | Gk)1(B̃k) .
1

(log n)ε
1(B̃k).

Proof. To prove the claim we use two facts. On the one hand it follows from [5, Theorem 1.5]
that if ρ is small enough, then a.s.

P
(

#{Utk+1, . . . , Utk+1
} ≤ 2ρ

tk+1 − tk
log n

∣∣∣ Gk) ≤ exp
(
−c(log n)1/6

)
.

Moreover, on the event {Utk ∈ B(0,
√
n− tk)}, with probability at most exp(−c(log n)2ε) the

random walk exits the ball B(0, (log n)ε
√
n− tk) before time tk+1. Therefore we obtain on the

event {Utk ∈ B(0,
√
n− tk)} that

P
(

#{Utk+1, . . . , Utk+1
} ∩ B(0, (log n)ε

√
n− tk) ≤ 2ρ

tk+1 − tk
log n

∣∣∣ Gk) . exp
(
−c(log n)2ε

)
. (3.9)

Suppose now on the other hand that a point is at distance at least r = O(
√
t) from Utk . Then it is

well known (see for instance [12]) that the probability that the walk hits it during the time interval

10



[tk, tk + t] is O(log(
√
t/r)/ log

√
t). If we apply this with t = tk+1 − tk, r =

√
n− tk/ log n, and use

that #B(0, r) � r2, we deduce that

E
[
#{U0, . . . , Utk} ∩ {Utk+1, . . . , Utk+1

} ∩ B(0, (log n)ε
√
n− tk)

∣∣ Gk]1(B̃k)

.

(
tk+1 − tk
(log n)2

+
(tk+1 − tk) log log n

(log n)17/16−2ε

)
1(B̃k)

.
tk+1 − tk
(log n)1+ε

1(B̃k). (3.10)

We now have almost surely

P(Ak | Gk)1(B̃k) ≥ P
(

#{Utk+1, . . . , Utk+1
} ∩ B(0, (log n)ε

√
n− tk) > 2ρ

tk+1 − tk
log n

∣∣∣∣ Gk)1(B̃k)

−P
(

#{U0, . . . , Utk} ∩ {Utk+1, . . . , Utk+1
} ∩ B(0, (log n)ε

√
n− tk) ≥ ρ

tk+1 − tk
log n

∣∣∣∣ Gk)1(B̃k)

≥
(

1− exp
(
−c(log n)1/6

)
− c1

(log n)ε

)
1(B̃k),

where the last inequality follows from (3.9), (3.10) and Markov’s inequality.

Next, if we write Q(·) = P(· | Un = 0) for the Doob transform of U , then (Uk)k≤n is a Markov chain

under Q. We let Ãk = Ak ∩ {Utk+1
∈ B(0, 2

√
n− tk)}. Then we have almost surely

Q(Ak | Gk)1(B̃k) ≥ Q
(
Ãk

∣∣∣ Gk)1(B̃k) & P
(
Ãk

∣∣∣ Gk)1(B̃k) ≥ p1(B̃k), (3.11)

where the penultimate inequality follows by the local central limit theorem as in (3.7) and the last
inequality from Claim 3.7 and the fact that

P
(
Utk+1

∈ B(0, 2
√
n− tk)

∣∣ Utk ∈ B(0,
√
n− tk)

)
≥ c > 0.

Then we introduce the process (Mk)k≤(logn)3/4 , defined by M1 = 0 and for k ≥ 2,

Mk :=

k−1∑
`=1

{
1(A` ∩ B̃`)−Q(A` | G`)1(B̃`)

}
.

Note that by construction it is a (Gk)-martingale, under the measure Q. Since the increments of
this martingale are bounded, it follows from Azuma-Hoeffding’s inequality that for any κ > 0, there
exists a positive constant c such that

P
(
|M(logn)3/4 | ≥ κ (log n)3/4

∣∣∣ Un = 0
)
. exp(−c(log n)3/4). (3.12)

As a consequence of Corollary 3.6 we get that

1− P
(
∩k≤(logn)3/4 Bk

∣∣∣ Un = 0
)
. exp(−c(log n)1/16). (3.13)

Claim 3.8. There exists a positive constant c such that

P

(logn)3/4∑
k=1

1(Utk ∈ B(0,
√
n− tk)) ≤ c(log n)3/4

∣∣∣∣∣∣ Un = 0

 ≤ exp(−c(log n)3/4).

11



Proof. By using reversibility and the local central limit theorem again, it suffices in fact to show
the result without conditioning on Un = 0, and replacing the times tk by n− tk. In other words, it
suffices to prove that

P

(logn)3/4∑
k=1

1(U2k ∈ B(0, 2k/2)) ≤ c(log n)3/4

 ≤ exp(−c(log n)3/4), (3.14)

for some c > 0. This is standard, but for the sake of completeness we give a short proof now. We
will prove in fact a stronger statement. Call

vk := inf{t ≥ 0 : Ut /∈ B(0, 2k/2)}.

Obviously it is sufficient to prove (3.14) with the events {vk > 2k} in place of {U2k ∈ B(0, 2k/2)}.
Set Hk = σ(U0, . . . , Uvk). Then it is well known that we can find a constant α > 0, such that a.s.
for any k,

P(vk+1 > 2k+1 | Hk) ≥ α.
Then by considering the martingale

M ′k :=

k∑
`=1

(
1(v` > 2`)− P(v` > 2` | H`−1)

)
,

and using the Azuma-Hoeffding inequality the desired estimate follows. So the proof of the claim
is complete.

By taking ρ and κ sufficiently small and using (3.11), (3.12), (3.13) and Claim 3.8 finishes the proof
of the proposition.

4 Example

In this section we construct the martingale of Lemma 1.3. Before doing so, we recall a self-
interacting random walk (X,Y, Z) in Z3 which was mentioned in [7] and is closely related to the
random walk of Theorem 1.1; on the first visit to a vertex only (X,Y ) performs a two-dimensional
step, while on later visits to the same vertex only Z changes by ±1 equally likely. Our proof in
this case does not apply, or at least another argument is required. Indeed, by looking again at
the process Z at the times when (X,Y ) moves, we still obtain a martingale, but we do not have a
good control on the jumps of this martingale. In particular, up to time n, they could be of size of
order log n, which might be a problem as Lemma 1.3 shows.

Proof of Lemma 1.3. Define M0 = 0. Let (Sik)k,i be independent (over i) simple random walks

on Z and let (S̃ik)k,i be independent (over i) random walks with jumps that take values ±[log n]
equally likely and start from 0. Let k∗ be the first integer such that n/2k∗ ≤ (log n)2. We now let

Mk = S1
k for k ≤ n/2.

We define t1 by

n− t1 =
n

2
+ inf

{
t ≥ 0 :

∣∣∣Mn/2 + S̃1
t

∣∣∣ ≤ log n
}
.

12



If t1 ≥ 0, then we let

Mk+n/2 = Mn/2 + S̃1
k for 0 ≤ k ≤ n

2
− t1.

If t1 < 0, then we let

Mk+n/2 = Mn/2 + S̃1
k for 0 ≤ k ≤ n

2
.

Suppose that we have defined t` > 0, we now define t`+1 inductively. We let

Mk+n−t` = Mn−t` + S`+1
k for 0 ≤ k ≤ t`

2

and we also define t`+1 by

n− t`+1 = n− t`
2

+ inf
{
t ≥ 0 :

∣∣∣Mn−t`/2 + S̃`+1
t

∣∣∣ ≤ log n
}
.

If t`+1 ≥ 0, then we let

Mk+n−t`/2 = Mn−t`/2 + S̃`+1
k for 0 ≤ k ≤ t`

2
− t`+1.

If t`+1 < 0, then we let

Mk+n−t`/2 = Mn−t`/2 + S̃`+1
k for 0 ≤ k ≤ t`

2
.

In this way we define the times t` for all ` ≤ k∗, unless there exists ` such that t` < 0, in which
case we set tm = 0 for all `+ 1 ≤ m ≤ k∗. If tk∗ > 1, then at time n− tk∗ + 1 if d(Mn−tk∗ , 0) 6= 0,
then the martingale makes a jump of size ±d(Mn−tk∗ , 0) equally likely. If d(Mn−tk∗ , 0) = 0, then
with probability 1/(log n)2 it jumps to ±[log n], while with probability 1− 1/(log n)2 it stays at 0.
From time n − tk∗ + 2 until time n at every step with probability 1/(log n)2 it jumps to ±[log n],
while with probability 1− 1/(log n)2 it stays at its current location.

By the definition of the martingale it follows that it satisfies the assumptions of the lemma. It only
remains to check that there exists a positive constant c such that P(Mn = 0) > c. We define the
events

E = {Mn−tk∗+1=0} and E′ = {M` = 0, for all ` ∈ {n− tk∗ + 2, . . . , n}}.

We now have

P(Mn = 0) ≥P
(
t1 > 0, . . . , tk∗ > 0,Mn−tk∗ = 0, E,E′

)
+ P

(
t1 > 0, . . . , tk∗ > 0,Mn−tk∗ 6= 0, E,E′

)
.

(4.1)

By the definition of the times ti, it follows that ti+1 ≤ ti/2, and hence we deduce that ti ≤ n/2i,
which implies that tk∗ ≤ n/2k

∗ ≤ (log n)2. We now obtain

P
(
E,E′

∣∣ t1 > 0, . . . , tk∗ > 0,Mn−tk∗ 6= 0
)
&

(
1− 1

(log n)2

)(logn)2

P
(
E,E′

∣∣ t1 > 0, . . . , tk∗ > 0,Mn−tk∗ = 0
)
≥
(

1− 1

(log n)2

)(logn)2

.

(4.2)

Using the estimate for a simple random walk that if h > 0, then

Ph(Sk > 0, ∀k ≤ n) .
h√
n
,
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we get for a positive constant c1 that

P(t`+1 > 0 | t` > 0) = 1− P
(

inf{t ≥ 0 : |Mn−t`/2 + S̃`+1
t | ≤ log n} ≤ t`

2

∣∣∣∣ t` > 0

)
≥ 1− c1

log n
.

Hence from (4.1) and (4.2) together with the above estimate and the fact that k∗ � log n, we finally
conclude

P(Mn = 0) &

(
1− c1

log n

)c2 logn
·
(

1− 1

(log n)2

)(logn)2

≥ c3 > 0

and this finishes the proof of the lemma.
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