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Abstract

Suppose X and Y are two independent irreducible Markov chains on n states. We consider
the intersection time, which is the first time their trajectories intersect. We show for reversible
and lazy chains that the total variation mixing time is always upper bounded by the expected
intersection time taken over the worst starting states. For random walks on trees we show the
two quantities are equivalent. We obtain an expression for the expected intersection time in
terms of the eigenvalues for reversible and transitive chains. For such chains we also show that
it is up to constants the geometric mean of n and E[I], where I is the number of intersections
up to the uniform mixing time. Finally for random walks on regular graphs we obtain sharp
inequalities that relate the expected intersection time to maximum hitting time and mixing time.

Keywords and phrases. Intersection time, random walk, mixing time, martingale, Doob’s maxi-
mal inequality.
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1 Introduction

Intersections of Markov chains have been intensively studied, partly due to their connection with
loop-erased walks and spanning trees. The 1991 book of Lawler [12] focuses on intersections of
random walks on lattices. In 1989, Fitzsimmons and Salisbury [6] developed techniques for analysing
intersections of Brownian motions and Lévy processes. In 1996, Salisbury [19] adapted those
techniques in order to bound intersection probabilities for discrete time Markov chains. In 2003,
Lyons, Pemantle and Peres [15] used Salisbury’s result to extend certain intersection probability
estimates from lattices to general Markov chains.

In this paper we focus on finite Markov chains and study the intersection time, defined as follows.
Let P denote the transition matrix of an irreducible Markov chain on a finite state space, with
stationary distribution 7. Let X and Y be two independent Markov chains with transition matrix P.
Define

71 =inf{t > 0: {Xo,..., Xs} N{Yp,..., Ys} # &},

i.e. 77 is the first time the trajectories of X and Y intersect. The key quantity will be the expectation
of the random time defined above, maximized over starting states:

tr = maxE, ,[77].
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This quantity was considered in [5], where it was estimated in many examples, in particular random
walks on tori Zg for d > 1.

We denote by tmix = tmix(1/4) the total variation mixing time and by tni; = max, , E.[7,] the

maximum hitting time, where for all y

Ty = inf{t > 0: X; = y}.

In order to avoid periodicity and near-periodicity issues we consider the lazy version of a Markov
chain, i.e. the chain with transition matrix P, = (P 4+ I)/2. From now on, unless otherwise stated,
all chains will be assumed lazy.

For functions f, g we will write f( ) < g(n) if there exists a constant ¢ > 0 such that f(n) < cg(n)
for all n. We write f(n) 2 g(n) if g(n) S f(n). Finally, we write f(n) < g(n) if both f(n) < g(n)

and f(n) Z g(n).
We define

tH = max Ex [7‘,4] N
z,A:m(A)>1/8

where 74 stands for the first hitting time of the set A.

Our first result shows that 1 is an upper bound on ty for all chains. Recall that all our chains are
irreducible.

Theorem 1.1. For all lazy Markov chains on a finite state space we have

ty <t

Using the equivalence between mixing times and ty; for reversible chains proved independently
by [17] and [I8] we obtain the following corollary.
Corollary 1.2. For all reversible and lazy Markov chains on a finite state space we have

tle ~ tI

For weighted random walks on finite trees, we have

tmix = tI.

We prove Theorem and Corollary [1.2]in Section [2, where we also state the equivalence between
mixing and hitting times.

Remark 1.3. We recall the definition of the Cesaro mixing time
S <3
ps(w Sa(
TV

Since tces < ty for all lazy and irreducible chains without assuming reversibility (see for instance [18],
Theorem 6.1 and Proposition 7.1]), it follows from Theorem that toes < t1.

~

tCes = Min { : max

Remark 1.4. We note that ¢; < 2ty;, since we can fix a state and wait until both chains hit it.
So Theorem demonstrates that the intersection time can be sandwiched between the mixing
time and the maximum hitting time of the chain. Hence this double inequality can be viewed as a
refinement of the basic inequality stating that the mixing time is upper bounded by the maximum
hitting time, which is rather loose for many chains.



We denote by tunif the uniform mixing time, i.e.

tunit = inf {t > 0 : max
x?y

503}

where p;(z,y) stands for the transition probability from z to y in ¢ steps for a lazy chain. Benjamini
and Morris [3] related t,;¢ to intersection properties of multiple random walks.

A chain is called transitive if for any two points z,y in the state space FE, there is a bijection
¢ : E— E such that ¢(z) = y and p(z,w) = p(p(2), p(w)) for all z,w.

For transitive reversible chains, we obtain an expression for the intersection time as stated in the
following theorem. We prove it in Section

Theorem 1.5. Let X be a transitive, reversible and lazy chain onn states and Q = 2?22(1—%)*2,
where (\;); are the non-unit eigenvalues of the chain in decreasing order. Then we have

Lunif

tr=/Q and Q=n Z pitj(z, x)

i.j=0
for any state x.

Remark 1.6. Let X and Y be independent transitive, reversible and lazy chains starting from x.
We note that if 7 = Y if ?‘;‘g 1(X; =), then E[I] = ZE:}“EO Pi+j(z,2). So Theorem |1.5/ can
be restated by saying

tr < n- E[I]

Remark 1.7. For a lazy simple random walk on Z@l, the local central limit theorem implies that
pe(x,z) < t=%2 for each fixed d when t < tunif =< ¢2. Thus the above theorem gives the intersection
time in Zg, for any d > 1. In particular, t; < ¢ for d = 1,2, 3, while t; < \/nlogn for d = 4 and
t; < v/n for d > 5, where n = ¢9. These estimates were derived in [5] by a less systematic method.

Throughout this article, unless mentioned otherwise, whenever we consider a finite graph, we will
always perform a lazy simple random walk on it.

Finally for all regular graphs, we show the following proposition in Section [4

Proposition 1.8. Let G be a connected regular graph on n vertices. Then
(a) thie S 17

3
(b) t1 S v/ (funie) *-

Remark 1.9. We note that both bounds are sharp in the sense that there exist regular graphs
attaining them. In particular, consider a random walk on a complete graph on n vertices. Then
t1 < y/n and tp;; = n—1. For a simple random walk on the cycle Z,, we have tpi; < n? and tunir < n?.

The intersection time is related to basic sampling questions [10], testing statistical properties of
distributions [2] and testing structural properties of graphs, in particular expansion and conductance
[4, 8, ©]. Many of the approaches used in these works rely on collision or intersections of random
walks (or more generally, random experiments), which is quite natural if one is interested in the
algorithms which work even in sublinear time (or space). In this context, it is particularly important
to understand the relation between these parameters and the expansion of the underlying graph,
as done in our result which relates the mixing time to the intersection time.



We further point out that there exists a seemingly related notion for single random walks, called self-
intersection time. This time plays a key role in the context of finding the discrete logarithm using
Markov chains [11]. However, we are not aware of any direct connection between this parameter
and the intersection time of two random walks, as the self-intersection time will be just a constant
for many natural classes of graphs.

2 Intersection time for reversible Markov chains

In this section we give the proof of Theorem We start by stating a result proved independently
by Oliveira [I7], and Peres and Sousi [18] that relates the total variation mixing time to the
maximum hitting time of large sets for lazy reversible Markov chains.

Theorem 2.1 ([17], [18]). Let X be a lazy reversible Markov chain with stationary distribution .
Then we have

where T4 1is the first hitting time of the set A, i.e. T4 = inf{t > 0: X, € A}.

For random walks on trees mixing times are equivalent to hitting times of the so-called “central
nodes”.

Definition 2.2. A node v of a tree T is called central if each component of T'— {v} has stationary
probability at most 1/2.

Theorem 2.3 ([18]). Let X be a lazy weighted random walk on a tree T and let v be a central node
(which always exists). Then
tmix < maxE,[7,],
T

where T, is the first hitting time of v.
Before proving Theorem we introduce another notion
t7 = maxE, . [17].
x

Note the difference between t7 and ¢ is that instead of maximizing over all starting points, in #;
we start one chain from stationarity and maximize over the starting point of the other one.

Proposition 2.4. For all Markov chains we have
t < tf.

Proof. Obviously we have tf < t1, so we only need to prove that t; S ¢f. To do so, we consider
three independent chains, X, Y and Z such that Xg = x, Yy = y and Zy ~ m. We will denote
by TIX’Y the first time that X and Y intersect and similarly for TIX’Z.

Let t = 6t7. It suffices to show that for all z,y we have

Pay (TIX’Y < 4t?) >c>0, (2.1)



since then by performing independent experiments, we would get that ¢; S ¢f. Forall 0 <k <t we
define

My, =Py (Y[0,4¢] N Z[2t,3t] = @ | Zo, ..., Zi) = Py (Y]0,4] N Z[2t,3t] = & | Z),

where the last equality follows from the Markov property. Then clearly M is a martingale. By
Doob’s maximal inequality we get

3 4
>2) <= —
Py <0r£ll?§t My = 4> =3 Py »(Y[0,4t] N Z[2t,3t] = @)
4
S3 Py, »(Y[2t,3t] N Z[2t,3t] = @)
gg tmax P, (77 > 1) o4 maxBor] 4t 2

3 t 3t 9

where in the final inequality we used Markov’s inequality. Next we define

3
G = {Olillécxi{th < 1 and TI Z < t}

By the union bound and Markov’s inequality we obtain

2 1 7
¢ — 4 - =—. 2.2
If o =inf{k : X}, € Z[0,t]} At and B = {w : P, ,,(Y'[0,4¢] N Z[t, 3t] # @) > 1/4}, then we have

Poy (777 < 5) 2 Puyr (77 <5L,G) = 3 P (7 <566, X, = ).

weB

For the last equality we note that on G if X, = w ¢ B, then 3¢ < t such that Z, = w ¢ B, and
hence on this event we have

P, (Y[0,4t] N Z[2t,3t] # & | Z)

P, (Y]0,4t] N Z[2t,3t] # @ | Zy = w)
P, (Y[0,41] N Z[2t — 0,3t — (] # @)
<P,

1
w(Y[0,4t] N Z[t, 3t] # @) < 1= G°.
We now deduce

ny(fl <5t> ZP”,,< <5t‘GXU_w)IPI,T(XU_w|G) P,.(G)

> pry( ! <4t)]P’ (X =w | G)PyA(G)

weB
=Y Puy(Y[0,4] N X[0,41] # 2) Py n(Xo = w | G) Py (G)
weB
1 11
> > Py (Y[0.48) N Z[t 3] # 0) Pon(Xo = w | G) Par(G) > - 12,
weB

The first inequality follows from the Markov property, since the events G and {X, = w} only
depend on the paths of the chains X and Z up to time ¢. The last inequality follows from (2.2))
and the definition of the set B and this concludes the proof of (2.1)). O



Proposition 2.5. For all lazy reversible Markov chains we have
ty S t7.
Proof. The proof of this proposition is similar and simpler than the proof of Proposition We

include it here for the sake of completeness.

Let X and Y be two independent lazy Markov chains such that Xg = = and Yy ~ w. Let A be a
set with m(A) > 1/8 and define
T4 =1inf{t > 0: X, € A}.

Then we claim that for all £ we have
Py(14 < 12t7) > ¢ > 0. (2.3)

First of all by Markov’s inequality we immediately get

1
Ponl(rs > 6t7) < . (2.4)

Let ¢t = 6t} and for 0 < k <t we let

Mk:PW(Y;S € A° ’}/E];"'va):PW(Y;fEAC | Yk)7
where the second equality follows by the Markov property. It follows from the definition of M that
it is a martingale, and hence applying Doob’s maximal inequality, we immediately obtain

Pw(max My, > 3> < m M) =2p (v e a0 < % (2.5)

0<k<t 4 3

W

since m(A) > 1/8. We now let

G:{makag?) and ngt}.
0<k<t 4

By the union bound and using (2.5)) and (2.4) we obtain

+

Px,ﬂ(GC) <

N | =
=

2
3
<

Letting 0 = min{k : Xj € Y[0,t]} At and B = {z : P,(74 <t) > 1/4}, we now get

Po(ta < 26) > Pon(ta <26,G) =Y Pon(ra <2t,G, X, =2).
zeB

The last equality is justified, since if X, = z ¢ B, then 3k such that Y, = z ¢ B, and hence on
this event we have

1 3 .
IP’W(KGA]Y/.C)<1:>0I£]?§M;€>Z:>G.

Therefore we deduce that

Po(ta <2t) 2 ) Pon(ta <2t G, Xo = 2)Pon(Xo = 2| G) Py rn(G)
zeB



> Z]P)Z(TA < t) ]P).Z‘,T((XO' =z ‘ G) Px,W(G) >
z€eB

where the second inequality follows by the Markov property, since the events G and {X, = z} only
depend on the paths of the chains up to time ¢. This concludes the proof of (2.3) and by performing
independent geometric experiments, we finally get that

manEx[TA] <t
Since A was an arbitrary set with 7(A4) > 1/8, we get
tn S t?
and this finishes the proof. O
Proof of Theorem [1.1l Propositions [2.4] and [2.5] immediately give that for all Markov chains we

have
th St

and this finishes the proof. O

Proof of Corollary Using the equivalence between mixing times and hitting times of large
sets for reversible chains by Theorem [2.1] combined with the statement of Theorem [I.1] shows that

tmix 5 tI-

It remains to prove that for trees the two quantities, tyix and t1, are equivalent. Since tyix < 1 for
all reversible Markov chains, we only need to show that t; < tnix. Let v be a central node. Then if
we wait until both chains X and Y hit v, this will give an upper bound on their intersection time,
and hence

Eoylmr) < B [7X] + Ey[r)] < 2t

Now Theorem [2.3] finishes the proof. O

3 Intersection time for transitive chains

In this section we prove Theorem [I.5] We start by showing that for transitive chains instead of
considering one or two worst starting points, both chains can start from stationarity. In particular,
we have the following.

Lemma 3.1. Let X be a transitive and reversible chain on a finite state space. Then
tr < Ex x[71].
Proof. From Proposition we have that for all reversible chains
tr < max Ey x[T1] -

By transitivity it follows that E, [7;] is independent of z. Therefore, averaging over all  in the
state space proves the lemma. ]



For a transitive chain we define for all ¢ > 0

t

gi(z,2) = ij(x,z) and @Q; = ng(m,z).

§=0
Note that by transitivity Q; does not depend on zx.

The next lemma gives a control on the first and second moment of the number of intersections of
two independent transitive chains. It will be used in the proof of Theorem In this form it
appeared in [15], but the idea goes back to Le-Gall and Rosen [I3, Lemma 3.1]. We include the
proof here for the reader’s convenience.

Lemma 3.2. Let X and Y be two independent transitive chains and Iy = Y'_, Z;:D 1(X; =Y))
count the number of intersections up to time t. Then for all x we have

Euollt] = Q¢ and E,.[I}] <4Q7.

Proof. For the first moment of the number of intersections we have

t ot
SRS 3 DNEARIS 3) 3) AT TSI SRS pIPEE
=0 j=0 z =0 7=0 z
For the second moment of I; we have
t t
Eoo[If] = ) Poy(Xi=Y] =3 > Pu(Xi=2X;=w)Py(Y; =2, Y = w)
i,5,6,m=0 Zw 4,5,6,m=0
< Z gt(2, 2)ge(2, ) + g, w)ge (w, 2))*
2
<2 (g7 (@, 2)g7 (2, w) + 67 (x, w) g (w, 2)) = 4Q7.
ER)

For the second inequality we used (a+b)? < 2(a?+b%) and for the last one we used transitivity. [

Lemma 3.3. Let X be a transitive chain on n states starting from x and S¢(z) = ZE‘:O gi(z, X;).

Then 0
<St( )z 2t> =16

Proof. Let X and Y be two independent copies of the chain starting from x. We write
t ot
=22 X =Yy
§=0 £=0
for the total number of intersections up to time t. We now observe that
St(.’E) = Ex[lt | Xo, e ,Xt] s
and hence we get

E.[Si(2)] = Epo[l] = Q. and E;[S7(2)] < E..[17].



From Lemma [3.2] we now obtain
E.[S7(2)] < Eoo[I7] < 4(Boulh])? = 407,

Applying the second moment method finally gives
1 (E; 1
P, <St($) Qt) (7 [

and this concludes the proof. ]

The following proposition is the key ingredient of the proof of Theorem [I.5] We now explain the
key idea behind the proof which was used in [7, Theorem 5.1]. We define a set of good points on
the path of the chain X and show that conditional on X and Y intersecting before time ¢, then
they intersect at a good point with constant probability .

Proposition 3.4. Let X and Y be two independent copies of a transitive chain on n states started
from stationarity. Let I, denote the number of intersections of X andY up to time t. Then

(t+ 1)

27(t + 1)2
4th '

nQy

S Pﬂ,ﬂ(It > 0) S

Proof. For all ¢ using the independence between X and Y we get

t41)2
7r7rIt ZZPﬂ'ﬂ' 1—Zan:Z):( )

n
z 4,5=0

For the second moment we have

Erx[I}] = Z > P(X =w)Pr(Yy = 2, Yy, = w) (3.1)
,5,£,m=0 z,w
2
< @Z@t(z,w) T i, 2))?

n n
Z,w

I
O
<
—

o
\)
~—

where for the last equality we used transitivity. Using the second moment method we obtain

Pr (I > 0) > (Z:C;t)z.
We now turn to prove the upper bound. For every x = (zy,...,x2) we define the set
t Qi
Ly(z) =qr<t: th(xr,l‘rﬂ) Z 5

By Lemma [3.3] we have that for all » < ¢ and all 2

P.(r € Ty(X)) > —

Z 16’ (3.3)

where to simplify notation we write I';(X) for the random set I't((Xs)s<2:) Next we define

r=min{j € [0,4: X; € {Yo,...,Y}},



and 7 = oo if the above set is empty. Conditioned on (Y)s<¢, we see that 7 is a stopping time

for X. Thus using also (3.3]) we get that 7 satisfies

1
Prr(reTy(X) |7 <00)> 16

Therefore

Prr(ly > 0) = Py (7 < 00) < 16 - Py o (7 € T(X)) .

(3.4)

It now remains to bound P (7 € I't(X)). We define 0 = min{¢ € [0,] : Y; € U,cp,(x)Xr} and we

note that

Pr (1 € TH(X)) < Pr (o €10,t]).

Writing A = {Y, = X, k € I'y, kis minimal, o € [0,¢]} for all £ < ¢ we now have

t

Erallo | 0 €[0,8]] = Erxlla | AplPrr(Ag | o €[0,8]).

k=0
For every k <t we obtain

t

(3.5)

Eﬂ,ﬂ'[IZt | Ak] > Z 1Eﬂ'Jr Z l(Ya+i = Xk+j) (Xs)s§2t = quk ]P)Tr,ﬂ'((Xs)sgﬂ =T | Ak)

z=(x0,...,T2¢) 1,j=0
s.t. kel (x)

¢
Q
= > D glmn wh)Pra(Xo)sc = 2 | Ay) > {
z=(x0,...,x2¢) J=0
s.t. kel (x)
Substituting the above lower bound into (3.6 we deduce
Erallor |0 € [0,0) > .
Using (3.1)) and the above bound we finally get
Er |1 2t + 1)2 23(t +1)?
]P)ﬂ-,ﬂ(O'E[O,t])S ﬂ',ﬂ'[ 2t] S( + )/n ( + ) )
Erxllz | o €[0,2]] Qt/2 nQy
This in conjunction with (3.4)) and (3.5)) gives
27(t+1)2
Pﬂ'ﬂ' I > O S Y
(I > 0) 0

and this concludes the proof of the upper bound.

O]

The following lemma follows by the spectral theorem and will be used for the upper bound in the
proof of Theorem Combined with the statement of Theorem [1.5] it gives that for transitive
and reversible chains tn;¢ < 1, which is an improvement over Corollary which gives tmix < t1.
Note that this is not true in general, if the chain is not transitive. Take for instance two cliques of

sizes y/n and n connected by a single edge.

10



Lemma 3.5. Let X be a reversible, transitive and lazy chain on n states and (\;); are the corre-
sponding non-unit eigenvalues. Then
tunif < 2\/>)

where Q@ = > (1 — )72

Proof. We start by noting that for a transitive, reversible and lazy chain the uniform mixing time
is given by

. 5
tunif = Min {t >0:p(z,x) < 471} )

See for instance [16 equation (16)] or [14, Proposition A.1]. By the spectral theorem and using

transitivity of X we have
t

1 R
pt(x,x):n~;)\ =n+n-kz_2)\k.

Therefore tyns = min{t : Y p_o, AL < 1/4}. We now set £; = 1 — \; for all j. Since the chain is
lazy, it follows that €; € [0, 1] for all j. So we now need to show

n

S (1 - ) VE=E < %. (3.7)
k=2

In order to prove (3.7)) it suffices to show

IN
I

Writing 7, = g - /D79 €j—2’ we get 1, > 1 and > ), 71;2 = 1. Since e” > 72 for all r > 0, we
finally deduce

n n
1 1
§ : —2r -2
e k S 1 . Tk = 1
k=2 k=2

and this finishes the proof. O
We are now ready to give the proof of Theorem [1.5

Proof of Theorem [1.5l Since the chain is reversible and transitive, it follows that for any state

we have L
Q=Y pirjlx,).

i=0 j=0

Using the spectral theorem together with transitivity, we obtain

1 n t e (t+1)2 1 n (1_)\t+1)2

k=11,j=0 k=2

For t >ty = (1 — X2) ™! we get

2
(1-A§+1)221—2Ag+121—2Agz1—g.

11



Since for all j > 2 we have A\; < Ay using the above inequality we obtain for all j > 2 and ¢ > t,q
2
(1 - )\t.“) >1-2
J e
Therefore for all ¢ > t, we deduce

0, > (t -1;11)2 n (1 _ 2) : % (3.9)

€

Using (3.9) together with Proposition now gives for ¢ > t,q

27(t+1)2
IFDTrJr(TI<t)§ ( i )

< CFPr (=70 (3.10)

We now claim that t; 2> +/Q. Let C; be a large constant to be specified later. If \/Q < Cit,el, then
the claim follows from Corollary So we may assume that \/Q > Cit,e. Setting t = C/Q > tral
for a constant C' > 1/C to be determined we get

%
C2Q+(1-2)Q°

If we take C' so that C? = (1 —2/e)/2® and we choose C; = (1 —2/e)~1/2. 2%, then from the above
we obtain

Pr(rr <t) <27

1
]P)7r,7r(7—[ < t) < 5

and this proves the claim that t; 2> /Q. It remains to show that t; < /Q. It suffices to show that
there are positive constants c¢; and co such that for all z,y we have

P, (n <e \/6) > ¢ (3.11)

Indeed, by then performing independent experiments, we would get that ¢; < 1/Q. From (3.8)) we
immediately get

(t+1)2

Q: <

Q
+ = (3.12)

This together with Proposition [3.4] gives that for all ¢ we have

1 (t+1)?
Prr(rr <t) > -+ ———5——. 1
Taking ¢t = /Q in (3.13) gives
1
Pw,w (TI < \/@) > g (314)

From Lemma [3.5( we have t,i; < 2v/Q. Setting s = 2,/Q we now have for all z,y

IP’%y(T[ < s+ \/@> > ]I”ac,y(X[s,s—l— \/@] NY[s,s+ \/@] + @)
= 0o, @ )ps(y, Y )Par <7'1 < \/@
I/,y/

12



> 15 S Ry (71 < VQ)
z,Yy

9 9
TG]PTI',W (TI < \/@) > Ta0)

128

where for the last inequality we used (3.14)). This proves (3.11]). Finally, from (3.9), (3.12) and
since tunir < 24/Q by Lemma, we obtain

v

tunif

Q
Qtynis = Z pitj(x, ) < o
ij=0

and this concludes the proof of the theorem. O

4 Intersection time for regular graphs

In this section we prove Proposition [1.8 which gives bounds on the intersection time for random
walks on regular graphs. We start by proving the first part of Proposition

Proof of Proposition (part (a)). Let ¢ = v/thit/2 and y be such that tn;; = max, E;[7,],
where we recall that 7, stands for the first hitting time of y by a simple random walk on G. Then
there exists z such that

: (4.1)

since otherwise we would get max, E;[7,] < tp;¢/2, which contradicts the choice of y. Let Y and Z
be two independent random walks started from y and z respectively. Then by the union bound we
get

t/2

P, (n< ) ZP% (Tyk > (4.2)

where 77 stands for the first hitting time of by the random walk Z. We note that by reversibility
and regularity we have

Py,z<75k<;>_21@y,z<r << Yk_w> Z]P’ <T < >Py(Yk—w)

:ZZ:IPZ<T£<2> Ye=y) = Z]P’wz<7 <3 Yk—y> (4.3)

Consider now a third walk X such that X, = Z for all s < 7'50 and X, = stﬁg for 7'50 <s< 750 +k.
0

We now obtain

Z]P)w,z<7—£ < %aYk :y> :ZZPZ(TU))( =3, Xs1k :y) = ZZPZ(T’[i( =8, Xstk :y)
w

w 12 t w
s<2 s<2

sZm(XHk:y):JPZ(T;%;w) <P <t) <2

- Uhit
s< 2
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where the penultimate inequality follows since k < ¢/2 and the final inequality from the choice of z
and y in (4.1). Combining (4.2) with (4.3) and the above inequality, we therefore conclude that

p _ t - 12 1
T — —_— = =
v\ >S9 ) =4 4

]Ez,y[TI] Z V thit -

This finally implies the desired inequality, i.e. tpiy < t%. O

and this gives

Before proving part (b) of Proposition we state a result about return probabilities for random walks
on regular graphs. Its proof follows for instance from [I Proposition 6.16, Chapter 6]. We also
state the Cauchy-Schwarz inequality for the transition probabilities for the sake of completeness.
For a proof we refer the reader to [I, Lemma 3.20, Chapter 3].

Lemma 4.1. Let G be a reqular graph on n vertices and t < n?. Then for all vertices x the return
probability to x satisfies
1
Pl(z,z) < —.
Lemma 4.2. Let X be a lazy reversible Markov chain with transition matriz P and stationary
distribution w. Then for all x,y we have

Pz,y) _ \/Pt(m) Plyy)
my) T\ w@) wly)

In particular, if X is a lazy simple random walk on a reqular graph G, then

P!(z,y) < v/ P!z, x) - P(y,y).

Proof of Proposition (part (b)). For this proof we assume that X and Y are lazy simple
random walks on the graph G. Clearly, this only changes the intersection time by a multiplicative
constant.

3
Let t = ¢y/n (tunif)* for a constant ¢ to be chosen later. We define I; to be the total number of
intersections of X and Y up to time t. We are going to use the second moment method, so we first
have to calculate the first and second moments of I;.

For the first moment we have

Epylli] = ZZPwa Y; =) Zszxvpjy,)

UZ,]O v 4,j=0
Zszxvpgvy mexy = A,
i,j=0 v i,j=0

where the third equality follows from reversibility and the regularity of the graph. For the second
moment we have

Euy[17] ZZ ey(Xi =Y =0, X, =Y, = w)
v,w 1,5,k 0=0

14



¢
:Z Z Po(Xi =0, X =w)Py(Y; =v,Y = w)

vaw i,k 0=0

=233 pr(w, w)pik(w, v)pe(y, w)pj—o(w, v)

v,w (ka) (]’8)
i>k j>0

+2) ) Zpk T, w)pi—k(w, v)p; (Y, v)pe—j (v, w) = 2% + 2%s. (4.4)
o (1) (7
>k j<€

We now treat each of the two sums Y7 and 9 appearing in (4.4]) separately. For the first sum ¥
using again reversibility and regularity of the graph we obtain by summing over v first that it is
equal to

=3 3 i@ W)~ (ke (W, w)pe(y, w)

w - (i,k) (j,0)
>k j>0 (45)
< el w)pely, w) Y pigi(w, w).
w  kJl i<t

j<t

Using Lemma we obtain that

SN pijww)= > pigw,w)+ Y pigi(w,w)

1<t ]St i+j§tunif 1+7 >tunif
i,j <t
t2 E 3
E \/7 < (tunif)2 + E = (tumf)2
7f+]<tunlf

]

where the last step follows, since we took ¢ = cv/n (tynif)
using reversibility again we deduce

3
umf Z Z pf w y pk x, w unlf Z karZ X y ( unlf)2 A

w k<t k<t

. Substituting this bound to (4.5) and

For the second sum X9 appearing in (4.4]) we get

2280 > - L k(@ w)pip(w, 0)p; (3, v VST ST (e w)piek(w, v)p; (Y, v)pej (v, w)

vw (i,k)  (4,6) vw (i,k)  (4,6)
1>k £—j>tunif i>k £—j<tunif
t
S —ZZ Z pz x,v p] Y,v + ZZ Z Z \/7 pk(a:,w)pj(y,v)pg,j(v,w)
(5,0 v,w k i<k+tunif
Z>k {— J>tunif £— ]<tun1f
1
SEZ Z Pivi (2, y) + Viunit - ZZ Z pe(y, w)pk(z, w)
(Gk) (5,0
i>k 0—j>tunit K*JStunif
= — Z Z pz—‘r] x y + v tunif * Z Z karé(xa y)
(% k) (.0 k(0
1>k £—7>tunis £—j<tunif
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IN

9 t ot
%ZZPH;‘(%Z/)JF\/@'Z > perri(a,y)

1=0 j=0 J L<tunie k

t2 t2 3
) = —-A + (tunif) = <tunif)

A+ Vv tunif - (tunif) : (TL + (tunif) n

Nlw

3
< 2

t2 3
- A + (tunif) 5
n

where the third inequality follows since tunie < n? for all regular graphs and the last inequality

~

follows from Lemmas and i.e. for t < n?

pe(x,y) < /pela, )/ ey, y) S

<

Therefore, applying the second moment method we now get
yL)? A? A

(Ex’ > -
~ 3 " 3 3 :
Euy[17] (tunit) 2 A+ (tamit)?  (funit)2 + (tmzf)g

Py (I > 0) >

Since tunir < n? for any regular graph, we can take ¢ large enough to ensure that t — tyni =< ¢t. Thus
we get that the quantity A can be lower bounded by

3
2

t2
E = (tunif) .

4> Y piley) 2
1,j<t
i+j>tunif

Since the function f(z) = z/(1 + 1/x) is increasing for > 0, using the above lower bound on A,
we finally conclude that

Py (I > 0) > > 0.

Since the above bound holds uniformly for all x and y we can perform independent experiments to
3

finally conclude that for regular graphs t; < /n (tunif)*- O
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