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Abstract

Suppose X and Y are two independent irreducible Markov chains on n states. We consider
the intersection time, which is the first time their trajectories intersect. We show for reversible
and lazy chains that the total variation mixing time is always upper bounded by the expected
intersection time taken over the worst starting states. For random walks on trees we show the
two quantities are equivalent. We obtain an expression for the expected intersection time in
terms of the eigenvalues for reversible and transitive chains. For such chains we also show that
it is up to constants the geometric mean of n and E[I], where I is the number of intersections
up to the uniform mixing time. Finally for random walks on regular graphs we obtain sharp
inequalities that relate the expected intersection time to maximum hitting time and mixing time.
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1 Introduction

Intersections of Markov chains have been intensively studied, partly due to their connection with
loop-erased walks and spanning trees. The 1991 book of Lawler [12] focuses on intersections of
random walks on lattices. In 1989, Fitzsimmons and Salisbury [6] developed techniques for analysing
intersections of Brownian motions and Lévy processes. In 1996, Salisbury [19] adapted those
techniques in order to bound intersection probabilities for discrete time Markov chains. In 2003,
Lyons, Pemantle and Peres [15] used Salisbury’s result to extend certain intersection probability
estimates from lattices to general Markov chains.

In this paper we focus on finite Markov chains and study the intersection time, defined as follows.
Let P denote the transition matrix of an irreducible Markov chain on a finite state space, with
stationary distribution π. LetX and Y be two independent Markov chains with transition matrix P .
Define

τI = inf{t ≥ 0 : {X0, . . . , Xt} ∩ {Y0, . . . , Yt} 6= ∅},

i.e. τI is the first time the trajectories of X and Y intersect. The key quantity will be the expectation
of the random time defined above, maximized over starting states:

tI = max
x,y

Ex,y[τI ] .
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This quantity was considered in [5], where it was estimated in many examples, in particular random
walks on tori Zd` for d ≥ 1.

We denote by tmix = tmix(1/4) the total variation mixing time and by thit = maxx,y Ex[τy] the
maximum hitting time, where for all y

τy = inf{t ≥ 0 : Xt = y}.

In order to avoid periodicity and near-periodicity issues we consider the lazy version of a Markov
chain, i.e. the chain with transition matrix PL = (P + I)/2. From now on, unless otherwise stated,
all chains will be assumed lazy.

For functions f, g we will write f(n) . g(n) if there exists a constant c > 0 such that f(n) ≤ cg(n)
for all n. We write f(n) & g(n) if g(n) . f(n). Finally, we write f(n) � g(n) if both f(n) . g(n)
and f(n) & g(n).

We define
tH = max

x,A:π(A)≥1/8
Ex[τA] ,

where τA stands for the first hitting time of the set A.

Our first result shows that tI is an upper bound on tH for all chains. Recall that all our chains are
irreducible.

Theorem 1.1. For all lazy Markov chains on a finite state space we have

tH . tI .

Using the equivalence between mixing times and tH for reversible chains proved independently
by [17] and [18] we obtain the following corollary.

Corollary 1.2. For all reversible and lazy Markov chains on a finite state space we have

tmix . tI .

For weighted random walks on finite trees, we have

tmix � tI.

We prove Theorem 1.1 and Corollary 1.2 in Section 2, where we also state the equivalence between
mixing and hitting times.

Remark 1.3. We recall the definition of the Cesaro mixing time

tCes = min

{
t : max

x

∥∥∥∥∥1

t

t−1∑
i=0

ps(x, ·)− π

∥∥∥∥∥
TV

≤ 1

4

}
.

Since tCes � tH for all lazy and irreducible chains without assuming reversibility (see for instance [18,
Theorem 6.1 and Proposition 7.1]), it follows from Theorem 1.1 that tCes . tI.

Remark 1.4. We note that tI ≤ 2thit, since we can fix a state and wait until both chains hit it.
So Theorem 1.1 demonstrates that the intersection time can be sandwiched between the mixing
time and the maximum hitting time of the chain. Hence this double inequality can be viewed as a
refinement of the basic inequality stating that the mixing time is upper bounded by the maximum
hitting time, which is rather loose for many chains.
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We denote by tunif the uniform mixing time, i.e.

tunif = inf

{
t ≥ 0 : max

x,y

∣∣∣∣pt(x, y)

π(y)
− 1

∣∣∣∣ ≤ 1

4

}
,

where pt(x, y) stands for the transition probability from x to y in t steps for a lazy chain. Benjamini
and Morris [3] related tunif to intersection properties of multiple random walks.

A chain is called transitive if for any two points x, y in the state space E, there is a bijection
ϕ : E → E such that ϕ(x) = y and p(z, w) = p(ϕ(z), ϕ(w)) for all z, w.

For transitive reversible chains, we obtain an expression for the intersection time as stated in the
following theorem. We prove it in Section 3.

Theorem 1.5. Let X be a transitive, reversible and lazy chain on n states and Q =
∑n

j=2(1−λj)−2,
where (λj)j are the non-unit eigenvalues of the chain in decreasing order. Then we have

tI �
√
Q and Q � n

tunif∑
i,j=0

pi+j(x, x)

for any state x.

Remark 1.6. Let X and Y be independent transitive, reversible and lazy chains starting from x.
We note that if I =

∑tunif
i=0

∑tunif
j=0 1(Xi = Yj), then E[I] =

∑tunif
i,j=0 pi+j(x, x). So Theorem 1.5 can

be restated by saying
tI �

√
n · E[I].

Remark 1.7. For a lazy simple random walk on Zd` , the local central limit theorem implies that
pt(x, x) � t−d/2 for each fixed d when t ≤ tunif � `2. Thus the above theorem gives the intersection
time in Zd` , for any d ≥ 1. In particular, tI � `2 for d = 1, 2, 3, while tI �

√
n log n for d = 4 and

tI �
√
n for d ≥ 5, where n = `d. These estimates were derived in [5] by a less systematic method.

Throughout this article, unless mentioned otherwise, whenever we consider a finite graph, we will
always perform a lazy simple random walk on it.

Finally for all regular graphs, we show the following proposition in Section 4.

Proposition 1.8. Let G be a connected regular graph on n vertices. Then

(a) thit . t2I

(b) tI .
√
n (tunif)

3
4 .

Remark 1.9. We note that both bounds are sharp in the sense that there exist regular graphs
attaining them. In particular, consider a random walk on a complete graph on n vertices. Then
tI �

√
n and thit = n−1. For a simple random walk on the cycle Zn we have thit � n2 and tunif � n2.

The intersection time is related to basic sampling questions [10], testing statistical properties of
distributions [2] and testing structural properties of graphs, in particular expansion and conductance
[4, 8, 9]. Many of the approaches used in these works rely on collision or intersections of random
walks (or more generally, random experiments), which is quite natural if one is interested in the
algorithms which work even in sublinear time (or space). In this context, it is particularly important
to understand the relation between these parameters and the expansion of the underlying graph,
as done in our result which relates the mixing time to the intersection time.
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We further point out that there exists a seemingly related notion for single random walks, called self-
intersection time. This time plays a key role in the context of finding the discrete logarithm using
Markov chains [11]. However, we are not aware of any direct connection between this parameter
and the intersection time of two random walks, as the self-intersection time will be just a constant
for many natural classes of graphs.

2 Intersection time for reversible Markov chains

In this section we give the proof of Theorem 1.1. We start by stating a result proved independently
by Oliveira [17], and Peres and Sousi [18] that relates the total variation mixing time to the
maximum hitting time of large sets for lazy reversible Markov chains.

Theorem 2.1 ([17], [18]). Let X be a lazy reversible Markov chain with stationary distribution π.
Then we have

tmix � max
x,A:π(A)≥ 1

8

Ex[τA] ,

where τA is the first hitting time of the set A, i.e. τA = inf{t ≥ 0 : Xt ∈ A}.

For random walks on trees mixing times are equivalent to hitting times of the so-called “central
nodes”.

Definition 2.2. A node v of a tree T is called central if each component of T −{v} has stationary
probability at most 1/2.

Theorem 2.3 ([18]). Let X be a lazy weighted random walk on a tree T and let v be a central node
(which always exists). Then

tmix � max
x

Ex[τv] ,

where τv is the first hitting time of v.

Before proving Theorem 1.1 we introduce another notion

t∗I = max
x

Ex,π[τI ] .

Note the difference between t∗I and tI is that instead of maximizing over all starting points, in t∗I
we start one chain from stationarity and maximize over the starting point of the other one.

Proposition 2.4. For all Markov chains we have

tI � t∗I .

Proof. Obviously we have t∗I ≤ tI, so we only need to prove that tI . t∗I . To do so, we consider
three independent chains, X, Y and Z such that X0 = x, Y0 = y and Z0 ∼ π. We will denote
by τX,YI the first time that X and Y intersect and similarly for τX,ZI .

Let t = 6t∗I . It suffices to show that for all x, y we have

Px,y
(
τX,YI ≤ 4t∗I

)
≥ c > 0, (2.1)
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since then by performing independent experiments, we would get that tI . t∗I . For all 0 ≤ k ≤ t we
define

Mk = Py,π(Y [0, 4t] ∩ Z[2t, 3t] = ∅ | Z0, . . . , Zk) = Py,π(Y [0, 4t] ∩ Z[2t, 3t] = ∅ | Zk) ,

where the last equality follows from the Markov property. Then clearly M is a martingale. By
Doob’s maximal inequality we get

Py,π
(

max
0≤k≤t

Mk ≥
3

4

)
≤ 4

3
· Py,π(Y [0, 4t] ∩ Z[2t, 3t] = ∅)

≤ 4

3
· Py,π(Y [2t, 3t] ∩ Z[2t, 3t] = ∅)

≤ 4

3
·max

x
Px,π(τI ≥ t) ≤

4

3
· maxx Ex,π[τI ]

t
=

4t∗I
3t

=
2

9
,

where in the final inequality we used Markov’s inequality. Next we define

G =

{
max

0≤k≤t
Mk ≤

3

4
and τX,ZI ≤ t

}
.

By the union bound and Markov’s inequality we obtain

Px,y,π(Gc) ≤ 2

9
+

1

6
=

7

18
. (2.2)

If σ = inf{k : Xk ∈ Z[0, t]} ∧ t and B = {w : Py,w(Y [0, 4t] ∩ Z[t, 3t] 6= ∅) ≥ 1/4}, then we have

Px,y
(
τX,YI ≤ 5t

)
≥ Px,y,π

(
τX,YI ≤ 5t, G

)
=
∑
w∈B

Px,y,π
(
τX,YI ≤ 5t, G,Xσ = w

)
.

For the last equality we note that on G if Xσ = w /∈ B, then ∃ ` ≤ t such that Z` = w /∈ B, and
hence on this event we have

Py,π(Y [0, 4t] ∩ Z[2t, 3t] 6= ∅ | Z`) = Py,π(Y [0, 4t] ∩ Z[2t, 3t] 6= ∅ | Z` = w)

= Py,w(Y [0, 4t] ∩ Z[2t− `, 3t− `] 6= ∅)

≤ Py,w(Y [0, 4t] ∩ Z[t, 3t] 6= ∅) <
1

4
=⇒ Gc.

We now deduce

Px,y
(
τX,YI ≤ 5t

)
≥
∑
w∈B

Px,y,π
(
τX,YI ≤ 5t

∣∣∣ G,Xσ = w
)
Px,π(Xσ = w | G)Px,π(G)

≥
∑
w∈B

Pw,y
(
τX,YI ≤ 4t

)
Px,π(Xσ = w | G)Px,π(G)

=
∑
w∈B

Pw,y(Y [0, 4t] ∩X[0, 4t] 6= ∅)Px,π(Xσ = w | G)Px,π(G)

≥
∑
w∈B

Py,w(Y [0, 4t] ∩ Z[t, 3t] 6= ∅)Px,π(Xσ = w | G)Px,π(G) ≥ 1

4
· 11

18
,

The first inequality follows from the Markov property, since the events G and {Xσ = w} only
depend on the paths of the chains X and Z up to time t. The last inequality follows from (2.2)
and the definition of the set B and this concludes the proof of (2.1).

5



Proposition 2.5. For all lazy reversible Markov chains we have

tH . t∗I .

Proof. The proof of this proposition is similar and simpler than the proof of Proposition 2.4. We
include it here for the sake of completeness.

Let X and Y be two independent lazy Markov chains such that X0 = x and Y0 ∼ π. Let A be a
set with π(A) ≥ 1/8 and define

τA = inf{t ≥ 0 : Xt ∈ A}.

Then we claim that for all x we have

Px(τA ≤ 12t∗I) ≥ c > 0. (2.3)

First of all by Markov’s inequality we immediately get

Px,π(τI ≥ 6t∗I) ≤
1

6
. (2.4)

Let t = 6t∗I and for 0 ≤ k ≤ t we let

Mk = Pπ(Yt ∈ Ac | Y0, . . . , Yk) = Pπ(Yt ∈ Ac | Yk) ,

where the second equality follows by the Markov property. It follows from the definition of M that
it is a martingale, and hence applying Doob’s maximal inequality, we immediately obtain

Pπ
(

max
0≤k≤t

Mk ≥
3

4

)
≤ 4

3
· Eπ[Mt] =

4

3
· Pπ(Yt ∈ Ac) ≤

1

2
, (2.5)

since π(A) ≥ 1/8. We now let

G =

{
max

0≤k≤t
Mk ≤

3

4
and τI ≤ t

}
.

By the union bound and using (2.5) and (2.4) we obtain

Px,π(Gc) ≤ 1

2
+

1

6
=

2

3
.

Letting σ = min{k : Xk ∈ Y [0, t]} ∧ t and B = {z : Pz(τA ≤ t) ≥ 1/4}, we now get

Px(τA ≤ 2t) ≥ Px,π(τA ≤ 2t, G) =
∑
z∈B

Px,π(τA ≤ 2t, G,Xσ = z) .

The last equality is justified, since if Xσ = z /∈ B, then ∃k such that Yk = z /∈ B, and hence on
this event we have

Pπ(Yt ∈ A | Yk) <
1

4
⇒ max

0≤k≤t
Mk >

3

4
⇒ Gc.

Therefore we deduce that

Px(τA ≤ 2t) ≥
∑
z∈B

Px,π(τA ≤ 2t | G,Xσ = z)Px,π(Xσ = z | G)Px,π(G)
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≥
∑
z∈B

Pz(τA ≤ t)Px,π(Xσ = z | G)Px,π(G) ≥ 1

4
· 1

3
=

1

12
,

where the second inequality follows by the Markov property, since the events G and {Xσ = z} only
depend on the paths of the chains up to time t. This concludes the proof of (2.3) and by performing
independent geometric experiments, we finally get that

max
x

Ex[τA] . t∗I .

Since A was an arbitrary set with π(A) ≥ 1/8, we get

tH . t∗I

and this finishes the proof.

Proof of Theorem 1.1. Propositions 2.4 and 2.5 immediately give that for all Markov chains we
have

tH . tI

and this finishes the proof.

Proof of Corollary 1.2. Using the equivalence between mixing times and hitting times of large
sets for reversible chains by Theorem 2.1 combined with the statement of Theorem 1.1 shows that

tmix . tI.

It remains to prove that for trees the two quantities, tmix and tI, are equivalent. Since tmix . tI for
all reversible Markov chains, we only need to show that tI . tmix. Let v be a central node. Then if
we wait until both chains X and Y hit v, this will give an upper bound on their intersection time,
and hence

Ex,y[τI ] ≤ Ex
[
τXv
]

+ Ey
[
τYv
]
≤ 2tv.

Now Theorem 2.3 finishes the proof.

3 Intersection time for transitive chains

In this section we prove Theorem 1.5. We start by showing that for transitive chains instead of
considering one or two worst starting points, both chains can start from stationarity. In particular,
we have the following.

Lemma 3.1. Let X be a transitive and reversible chain on a finite state space. Then

tI � Eπ,π[τI ] .

Proof. From Proposition 2.4 we have that for all reversible chains

tI � max
x

Ex,π[τI ] .

By transitivity it follows that Ex,π[τI ] is independent of x. Therefore, averaging over all x in the
state space proves the lemma.
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For a transitive chain we define for all t > 0

gt(x, z) =
t∑

j=0

pj(x, z) and Qt =
∑
z

g2
t (x, z).

Note that by transitivity Qt does not depend on x.

The next lemma gives a control on the first and second moment of the number of intersections of
two independent transitive chains. It will be used in the proof of Theorem 1.5. In this form it
appeared in [15], but the idea goes back to Le-Gall and Rosen [13, Lemma 3.1]. We include the
proof here for the reader’s convenience.

Lemma 3.2. Let X and Y be two independent transitive chains and It =
∑t

i=0

∑t
j=0 1(Xi = Yj)

count the number of intersections up to time t. Then for all x we have

Ex,x[It] = Qt and Ex,x
[
I2
t

]
≤ 4Q2

t .

Proof. For the first moment of the number of intersections we have

Ex,x[It] =
t∑
i=0

t∑
j=0

Px,x(Xi = Yj) =
∑
z

t∑
i=0

t∑
j=0

Px(Xi = z)Px(Yj = z) =
∑
z

g2
t (x, z) = Qt.

For the second moment of It we have

Ex,x
[
I2
t

]
=

t∑
i,j,`,m=0

Px,y(Xi = Yj , X` = Ym) =
∑
z,w

t∑
i,j,`,m=0

Px(Xi = z,X` = w)Py(Yj = z, Ym = w)

≤
∑
z,w

(gt(x, z)gt(z, w) + gt(x,w)gt(w, z))
2

≤ 2
∑
z,w

(g2
t (x, z)g

2
t (z, w) + g2

t (x,w)g2
t (w, z)) = 4Q2

t .

For the second inequality we used (a+b)2 ≤ 2(a2 +b2) and for the last one we used transitivity.

Lemma 3.3. Let X be a transitive chain on n states starting from x and St(x) =
∑t

j=0 gt(x,Xj).
Then

Px
(
St(x) ≥ Qt

2

)
≥ 1

16
.

Proof. Let X and Y be two independent copies of the chain starting from x. We write

It =
t∑

j=0

t∑
`=0

1(Xj = Y`)

for the total number of intersections up to time t. We now observe that

St(x) = Ex[It | X0, . . . , Xt] ,

and hence we get

Ex[St(x)] = Ex,x[It] = Qt and Ex
[
S2
t (x)

]
≤ Ex,x

[
I2
t

]
.
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From Lemma 3.2 we now obtain

Ex
[
S2
t (x)

]
≤ Ex,x

[
I2
t

]
≤ 4(Ex,x[It])

2 = 4Q2
t .

Applying the second moment method finally gives

Px
(
St(x) ≥ Qt

2

)
≥ 1

4
· (Ex[St(x)])2

Ex
[
S2
t (x)

] ≥ 1

16

and this concludes the proof.

The following proposition is the key ingredient of the proof of Theorem 1.5. We now explain the
key idea behind the proof which was used in [7, Theorem 5.1]. We define a set of good points on
the path of the chain X and show that conditional on X and Y intersecting before time t, then
they intersect at a good point with constant probability .

Proposition 3.4. Let X and Y be two independent copies of a transitive chain on n states started
from stationarity. Let It denote the number of intersections of X and Y up to time t. Then

(t+ 1)2

4nQt
≤ Pπ,π(It > 0) ≤ 27(t+ 1)2

nQt
.

Proof. For all t using the independence between X and Y we get

Eπ,π[It] =
∑
z

t∑
i,j=0

Pπ,π(Xi = z, Yj = z) =
(t+ 1)2

n
.

For the second moment we have

Eπ,π
[
I2
t

]
=

t∑
i,j,`,m=0

∑
z,w

Pπ(Xi = z,Xj = w)Pπ(Y` = z, Ym = w) (3.1)

≤ (t+ 1)2

n2

∑
z,w

(gt(z, w) + gt(w, z))
2 =

4(t+ 1)2

n
Qt, (3.2)

where for the last equality we used transitivity. Using the second moment method we obtain

Pπ,π(It > 0) ≥ (t+ 1)2

4nQt
.

We now turn to prove the upper bound. For every x = (x0, . . . , x2t) we define the set

Γt(x) =

r ≤ t :

t∑
j=0

gt(xr, xr+j) ≥
Qt
2

 .

By Lemma 3.3 we have that for all r ≤ t and all z

Pz(r ∈ Γt(X)) ≥ 1

16
, (3.3)

where to simplify notation we write Γt(X) for the random set Γt((Xs)s≤2t) Next we define

τ = min{j ∈ [0, t] : Xj ∈ {Y0, . . . , Yt}},
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and τ = ∞ if the above set is empty. Conditioned on (Ys)s≤t, we see that τ is a stopping time
for X. Thus using also (3.3) we get that τ satisfies

Pπ,π(τ ∈ Γt(X) | τ <∞) ≥ 1

16
.

Therefore

Pπ,π(It > 0) = Pπ,π(τ <∞) ≤ 16 · Pπ,π(τ ∈ Γt(X)) . (3.4)

It now remains to bound Pπ,π(τ ∈ Γt(X)). We define σ = min{` ∈ [0, t] : Y` ∈ ∪r∈Γt(X)Xr} and we
note that

Pπ,π(τ ∈ Γt(X)) ≤ Pπ,π(σ ∈ [0, t]) . (3.5)

Writing Ak = {Yσ = Xk, k ∈ Γt, k is minimal, σ ∈ [0, t]} for all k ≤ t we now have

Eπ,π[I2t | σ ∈ [0, t]] =

t∑
k=0

Eπ,π[I2t | Ak]Pπ,π(Ak | σ ∈ [0, t]) . (3.6)

For every k ≤ t we obtain

Eπ,π[I2t | Ak] ≥
∑

x=(x0,...,x2t)
s.t. k∈Γt(x)

Eπ,π

 t∑
i,j=0

1(Yσ+i = Xk+j)

∣∣∣∣∣∣ (Xs)s≤2t = x,Ak

Pπ,π((Xs)s≤2t = x | Ak)

=
∑

x=(x0,...,x2t)
s.t. k∈Γt(x)

t∑
j=0

gt(xk, xk+j)Pπ,π((Xs)s≤2t = x | Ak) ≥
Qt
2
.

Substituting the above lower bound into (3.6) we deduce

Eπ,π[I2t | σ ∈ [0, t]] ≥ Qt
2
.

Using (3.1) and the above bound we finally get

Pπ,π(σ ∈ [0, t]) ≤ Eπ,π[I2t]

Eπ,π[I2t | σ ∈ [0, t]]
≤ (2t+ 1)2/n

Qt/2
≤ 23(t+ 1)2

nQt
.

This in conjunction with (3.4) and (3.5) gives

Pπ,π(It > 0) ≤ 27(t+ 1)2

nQt
,

and this concludes the proof of the upper bound.

The following lemma follows by the spectral theorem and will be used for the upper bound in the
proof of Theorem 1.5. Combined with the statement of Theorem 1.5 it gives that for transitive
and reversible chains tunif . tI, which is an improvement over Corollary 1.2 which gives tmix . tI.
Note that this is not true in general, if the chain is not transitive. Take for instance two cliques of
sizes

√
n and n connected by a single edge.

10



Lemma 3.5. Let X be a reversible, transitive and lazy chain on n states and (λj)j are the corre-
sponding non-unit eigenvalues. Then

tunif ≤ 2
√
Q,

where Q =
∑n

k=2(1− λk)−2.

Proof. We start by noting that for a transitive, reversible and lazy chain the uniform mixing time
is given by

tunif = min

{
t ≥ 0 : pt(x, x) ≤ 5

4n

}
.

See for instance [16, equation (16)] or [14, Proposition A.1]. By the spectral theorem and using
transitivity of X we have

pt(x, x) =
1

n
·

t∑
k=1

λtk =
1

n
+

1

n
·
n∑
k=2

λtk.

Therefore tunif = min{t :
∑n

k=2 λ
t
k ≤ 1/4}. We now set εj = 1 − λj for all j. Since the chain is

lazy, it follows that εj ∈ [0, 1] for all j. So we now need to show

n∑
k=2

(1− εk)
2
√∑n

j=2 ε
−2
j ≤ 1

4
. (3.7)

In order to prove (3.7) it suffices to show

n∑
k=2

exp

−2εk ·

√√√√ n∑
j=2

ε−2
j

 ≤ 1

4
.

Writing rk = εk ·
√∑n

j=2 ε
−2
j , we get rk ≥ 1 and

∑n
k=2 r

−2
k = 1. Since er ≥ r2 for all r ≥ 0, we

finally deduce

n∑
k=2

e−2rk ≤ 1

4
·
n∑
k=2

r−2
k =

1

4

and this finishes the proof.

We are now ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. Since the chain is reversible and transitive, it follows that for any state x
we have

Qt =
t∑
i=0

t∑
j=0

pi+j(x, x).

Using the spectral theorem together with transitivity, we obtain

Qt =
1

n
·
n∑
k=1

t∑
i,j=0

λi+jk =
(t+ 1)2

n
+

1

n
·
n∑
k=2

(1− λt+1
k )2

(1− λk)2
. (3.8)

For t ≥ trel = (1− λ2)−1 we get(
1− λt+1

2

)2 ≥ 1− 2λt+1
2 ≥ 1− 2λt2 ≥ 1− 2

e
.

11



Since for all j ≥ 2 we have λj ≤ λ2 using the above inequality we obtain for all j ≥ 2 and t ≥ trel(
1− λt+1

j

)2
≥ 1− 2

e
.

Therefore for all t ≥ trel we deduce

Qt ≥
(t+ 1)2

n
+

(
1− 2

e

)
· Q
n
. (3.9)

Using (3.9) together with Proposition 3.4 now gives for t ≥ trel

Pπ,π(τI ≤ t) ≤
27(t+ 1)2

(t+ 1)2 +
(
1− 2

e

)
Q
. (3.10)

We now claim that tI &
√
Q. Let C1 be a large constant to be specified later. If

√
Q ≤ C1trel, then

the claim follows from Corollary 1.2. So we may assume that
√
Q ≥ C1trel. Setting t = C

√
Q ≥ trel

for a constant C ≥ 1/C1 to be determined we get

Pπ,π(τI ≤ t) ≤ 27 · C2Q

C2Q+
(
1− 2

e

)
Q
.

If we take C so that C2 = (1− 2/e)/28 and we choose C1 = (1− 2/e)−1/2 · 24, then from the above
we obtain

Pπ,π(τI ≤ t) ≤
1

2

and this proves the claim that tI &
√
Q. It remains to show that tI .

√
Q. It suffices to show that

there are positive constants c1 and c2 such that for all x, y we have

Px,y
(
τI ≤ c1

√
Q
)
≥ c2. (3.11)

Indeed, by then performing independent experiments, we would get that tI .
√
Q. From (3.8) we

immediately get

Qt ≤
(t+ 1)2

n
+
Q

n
. (3.12)

This together with Proposition 3.4 gives that for all t we have

Pπ,π(τI ≤ t) ≥
1

4
· (t+ 1)2

(t+ 1)2 +Q
. (3.13)

Taking t =
√
Q in (3.13) gives

Pπ,π
(
τI ≤

√
Q
)
≥ 1

8
. (3.14)

From Lemma 3.5 we have tunif ≤ 2
√
Q. Setting s = 2

√
Q we now have for all x, y

Px,y
(
τI ≤ s+

√
Q
)
≥ Px,y

(
X[s, s+

√
Q] ∩ Y [s, s+

√
Q] 6= ∅

)
=
∑
x′,y′

ps(x, x
′)ps(y, y

′)Px′,y′
(
τI ≤

√
Q
)

12



≥ 9

16
·
∑
x′,y′

π(x′)π(y′)Px′,y′
(
τI ≤

√
Q
)

≥ 9

16
Pπ,π

(
τI ≤

√
Q
)
≥ 9

128
,

where for the last inequality we used (3.14). This proves (3.11). Finally, from (3.9), (3.12) and
since tunif ≤ 2

√
Q by Lemma 3.5 we obtain

Qtunif =

tunif∑
i,j=0

pi+j(x, x) � Q

n
.

and this concludes the proof of the theorem.

4 Intersection time for regular graphs

In this section we prove Proposition 1.8 which gives bounds on the intersection time for random
walks on regular graphs. We start by proving the first part of Proposition 1.8.

Proof of Proposition 1.8 (part (a)). Let t =
√
thit/2 and y be such that thit = maxx Ex[τy],

where we recall that τy stands for the first hitting time of y by a simple random walk on G. Then
there exists z such that

Pz(τy ≤ t) ≤
2t

thit
, (4.1)

since otherwise we would get maxx Ex[τy] ≤ thit/2, which contradicts the choice of y. Let Y and Z
be two independent random walks started from y and z respectively. Then by the union bound we
get

Py,z
(
τI <

t

2

)
≤

t/2∑
k=1

Py,z
(
τZYk <

t

2

)
, (4.2)

where τZx stands for the first hitting time of x by the random walk Z. We note that by reversibility
and regularity we have

Py,z
(
τZYk <

t

2

)
=
∑
w

Py,z
(
τZw <

t

2
, Yk = w

)
=
∑
w

Pz
(
τZw <

t

2

)
Py(Yk = w)

=
∑
w

Pz
(
τZw <

t

2

)
Pw(Yk = y) =

∑
w

Pw,z
(
τZw <

t

2
, Yk = y

)
. (4.3)

Consider now a third walkX such thatXs = Zs for all s ≤ τZY0 andXs = Ys−τZY0
for τZY0 ≤ s ≤ τ

Z
Y0

+k.

We now obtain∑
w

Pw,z
(
τZw <

t

2
, Yk = y

)
=
∑
w

∑
s< t

2

Pz
(
τXw = s,Xs+k = y

)
=
∑
s< t

2

∑
w

Pz
(
τXw = s,Xs+k = y

)
≤
∑
s< t

2

Pz(Xs+k = y) = Pz
(
τXy <

t

2
+ k

)
≤ Pz

(
τXy < t

)
≤ 2t

thit
,

13



where the penultimate inequality follows since k ≤ t/2 and the final inequality from the choice of z
and y in (4.1). Combining (4.2) with (4.3) and the above inequality, we therefore conclude that

Py,z
(
τI <

t

2

)
≤ t2

thit
=

1

4

and this gives
Ez,y[τI ] &

√
thit.

This finally implies the desired inequality, i.e. thit . t2I .

Before proving part (b) of Proposition we state a result about return probabilities for random walks
on regular graphs. Its proof follows for instance from [1, Proposition 6.16, Chapter 6]. We also
state the Cauchy-Schwarz inequality for the transition probabilities for the sake of completeness.
For a proof we refer the reader to [1, Lemma 3.20, Chapter 3].

Lemma 4.1. Let G be a regular graph on n vertices and t ≤ n2. Then for all vertices x the return
probability to x satisfies

P t(x, x) .
1√
t
.

Lemma 4.2. Let X be a lazy reversible Markov chain with transition matrix P and stationary
distribution π. Then for all x, y we have

P t(x, y)

π(y)
≤

√
P t(x, x)

π(x)
· P

t(y, y)

π(y)
.

In particular, if X is a lazy simple random walk on a regular graph G, then

P t(x, y) ≤
√
P t(x, x) · P t(y, y).

Proof of Proposition 1.8 (part (b)). For this proof we assume that X and Y are lazy simple
random walks on the graph G. Clearly, this only changes the intersection time by a multiplicative
constant.

Let t = c
√
n (tunif)

3
4 for a constant c to be chosen later. We define It to be the total number of

intersections of X and Y up to time t. We are going to use the second moment method, so we first
have to calculate the first and second moments of It.

For the first moment we have

Ex,y[It] =
∑
v

t∑
i,j=0

Px,y(Xi = Yj = v) =
∑
v

t∑
i,j=0

pi(x, v)pj(y, v)

=
t∑

i,j=0

∑
v

pi(x, v)pj(v, y) =
t∑

i,j=0

pi+j(x, y) = A,

where the third equality follows from reversibility and the regularity of the graph. For the second
moment we have

Ex,y
[
I2
t

]
=
∑
v,w

t∑
i,j,k,`=0

Px,y(Xi = Yj = v,Xk = Y` = w)

14



=
∑
v,w

t∑
i,j,k,`=0

Px(Xi = v,Xk = w)Py(Yj = v, Y` = w)

= 2
∑
v,w

∑
(i,k)
i≥k

∑
(j,`)
j≥`

pk(x,w)pi−k(w, v)p`(y, w)pj−`(w, v)

+ 2
∑
v,w

∑
(i,k)
i≥k

∑
(j,`)
j≤`

pk(x,w)pi−k(w, v)pj(y, v)p`−j(v, w) = 2Σ1 + 2Σ2. (4.4)

We now treat each of the two sums Σ1 and Σ2 appearing in (4.4) separately. For the first sum Σ1

using again reversibility and regularity of the graph we obtain by summing over v first that it is
equal to

Σ1 =
∑
w

∑
(i,k)
i≥k

∑
(j,`)
j≥`

pk(x,w)p(i+j)−(k+`)(w,w)p`(y, w)

≤
∑
w

∑
k,`

pk(x,w)p`(y, w)
∑
i≤t
j≤t

pi+j(w,w).
(4.5)

Using Lemma 4.1 we obtain that∑
i≤t

∑
j≤t

pi+j(w,w) =
∑

i+j≤tunif

pi+j(w,w) +
∑

i+j>tunif
i,j≤t

pi+j(w,w)

.
∑

i+j≤tunif

1√
i+ j

+
t2

n
. (tunif)

3
2 +

t2

n
� (tunif)

3
2 ,

where the last step follows, since we took t = c
√
n (tunif)

3
4 . Substituting this bound to (4.5) and

using reversibility again we deduce

Σ1 . (tunif)
3
2

∑
w

∑
`,k≤t

p`(w, y)pk(x,w) = (tunif)
3
2

∑
`,k≤t

pk+`(x, y) = (tunif)
3
2 ·A.

For the second sum Σ2 appearing in (4.4) we get

Σ2 .
∑
v,w

∑
(i,k)
i≥k

∑
(j,`)

`−j≥tunif

1

n
· pk(x,w)pi−k(w, v)pj(y, v) +

∑
v,w

∑
(i,k)
i≥k

∑
(j,`)

`−j≤tunif

pk(x,w)pi−k(w, v)pj(y, v)p`−j(v, w)

.
1

n

∑
v

∑
(i,k)
i≥k

∑
(j,`)

`−j≥tunif

pi(x, v)pj(y, v) +
∑
v,w

∑
k

∑
(j,`)

`−j≤tunif

 ∑
i<k+tunif

1√
i− k

+
t

n

 pk(x,w)pj(y, v)p`−j(v, w)

.
1

n

∑
(i,k)
i≥k

∑
(j,`)

`−j≥tunif

pi+j(x, y) +
√
tunif ·

∑
w

∑
k

∑
(j,`)

`−j≤tunif

p`(y, w)pk(x,w)

=
1

n

∑
(i,k)
i≥k

∑
(j,`)

`−j≥tunif

pi+j(x, y) +
√
tunif ·

∑
k

∑
(j,`)

`−j≤tunif

pk+`(x, y)
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≤ t2

n

t∑
i=0

t∑
j=0

pi+j(x, y) +
√
tunif ·

∑
j

∑
L≤tunif

∑
k

pk+L+j(x, y)

≤ t2

n
·A+

√
tunif · (tunif) ·

(
t2

n
+ (tunif)

3
2

)
� t2

n
·A+ (tunif)

3 � (tunif)
3
2 ·A+ (tunif)

3,

where the third inequality follows since tunif . n2 for all regular graphs and the last inequality
follows from Lemmas 4.1 and 4.2, i.e. for t . n2

pt(x, y) ≤
√
pt(x, x)

√
pt(y, y) .

1√
t
.

Therefore, applying the second moment method we now get

Px,y(It > 0) ≥ (Ex,y[It])2

Ex,y
[
I2
t

] &
A2

(tunif)
3
2 A+ (tunif)3

=
A

(tunif)
3
2 + (tunif)3

A

.

Since tunif . n2 for any regular graph, we can take c large enough to ensure that t− tunif � t. Thus
we get that the quantity A can be lower bounded by

A ≥
∑
i,j≤t

i+j>tunif

pi+j(x, y) &
t2

n
� (tunif)

3
2 .

Since the function f(x) = x/(1 + 1/x) is increasing for x > 0, using the above lower bound on A,
we finally conclude that

Px,y(It > 0) ≥ c′ > 0.

Since the above bound holds uniformly for all x and y we can perform independent experiments to

finally conclude that for regular graphs tI .
√
n (tunif)

3
4 .
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