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We prove a strong law of large numbers for the Newtonian capacity of a Wiener sausage in
the critical dimension four.
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1 Introduction

We denote by (βs, s ≥ 0) a Brownian motion on R4, and for r > 0 and 0 ≤ s ≤ t <∞, the Wiener
sausage of radius r in the time period [s, t] is defined as

Wr[s, t] = {z ∈ R4 : ‖z − βu‖ ≤ r for some s ≤ u ≤ t}. (1.1)

Let Px and Ex be the law and expectation with respect to the Brownian motion started at site x,
and let G denote Green’s function and HA denote the hitting time of A ⊂ R4 by the Brownian
motion. The Newtonian capacity of a compact set A ⊂ R4 may be defined through hitting time as

Cap(A) = lim
‖x‖→∞

Px(HA < +∞)

G(x)
. (1.2)

A more classical definition through a variational expression reads

Cap(A) =
(

inf{
∫ ∫

G(x− y)dµ(x)dµ(y) : µ prob. measure with support in A}
)−1

.

Our central object is the capacity of the Wiener sausage, and formula (1.2), with A = W1[0, t],
casts the problem into an intersection event for two independent sausages.

Our main result is the following law of large number for the capacity of the Wiener sausage.

Theorem 1.1. In dimension four, for any radius r > 0, almost surely and in Lp, for any p ∈ [1,∞),
we have

lim
t→∞

log t

t
Cap(Wr[0, t]) = 4π2. (1.3)
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The proof of (1.3) presents some similarities with the proof in the discrete case, which is given
in our companion paper [3], but also substantial differences. The main difference concerns the
computation of the expected capacity, which in the discrete setting had been essentially obtained
by Lawler, see [4] for details, whereas in our context it requires new delicate analysis.

It may seem odd that the fluctuations result we obtain in the discrete model [3] are not directly
transposable in the continuous setting. However, it was noticed some thirty years ago by Le Gall [12]
that it does not seem easy to deduce Wiener sausage estimates from random walks estimates, and
vice-versa. Let us explain one reason for that. The capacity of a set A can be represented as
the integral of the equilibrium measure of the set A, very much as in the discrete formula for the
capacity of the range R[0, n] of a random walk (with obvious notation)

Cap(R[0, n]) =
∑

x∈R[0,n]

Px
(
H+
R[0,n] =∞

)
.

Whereas Lawler [11] has established deep non-intersection results for two random walks in dimen-
sion four, the corresponding results for the equilibrium measure of W1(0, t) are still missing.

As noted in [3], the scaling in Theorem 1.1 is analogous to that of the law of large numbers for the
volume of the Wiener sausage in d = 2 (see [13]).

Remark 1.2. The limit in (1.3) is independent of the radius revealing the scale invariance property,
a sign of criticality, of the scaled limit of the capacity of the sausage in dimension four. Let us
explain better the scaling, and the criticality of d = 4. The hitting-time representation (1.2) yields

a similar formula when we take expectation. Thus, if W̃ denotes a sausage built from β̃ a Brownian
motion independent of β, then we establish

E[Cap(W1[0, t])] = lim
‖z‖→∞

1

G(z)
P0,z

(
W1/2[0, t] ∩ W̃1/2[0,∞) 6= ∅

)
. (1.4)

Now two independent Wiener sausages W1/2[0, t] and W̃1/2[0,∞), started at a distance of order
√
t,

meet with non-vanishing probability (as t → ∞) only if d < 4. Indeed, when ‖z‖ is of order
√
t,

then

P0,z

(
W1/2[0, t] ∩ W̃1/2[0,∞) 6= ∅

)
≈


1 if d = 3
1

log t if d = 4
1

t(d−4)/2 if d ≥ 5.

(1.5)

To make a link with (1.4), at least at a heuristic level, recall that W1/2[0, t] lives basically in

B(0,
√
t), the Euclidean ball of center 0 and radius

√
t, and then we condition β̃ on hitting first

B(0,
√
t). Note that by (1.2) and the scaling property of Brownian motion

lim
‖z‖→∞

1

G(z)
Pz
(
HB(0,

√
t) <∞

)
= Cap(B(0,

√
t)) = t(d−2)/2Cap(B(0, 1)). (1.6)

Thus, at a heuristic level, combining (1.5) and (1.6), we obtain

E[Cap(W1[0, t])] ≈


√
t if d = 3
t

log t if d = 4

t if d ≥ 5.

Remark 1.3. Our result is indeed a result about non-intersection probabilities for two independent
Wiener sausages, and the asymptotic result (1.3) reads as follows. For any ε > 0, almost surely,
for t large enough,

(1− ε) 2t

log t
≤ lim
‖z‖→∞

‖z‖2 · P0,z

(
W1/2[0, t] ∩ W̃1/2[0,∞) 6= ∅

∣∣∣ β) ≤ (1 + ε)
2t

log t
. (1.7)
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Estimates, up to constants, have been obtained in a different regime (where z and t are related
as z =

√
tx) by Pemantle, Peres and Shapiro [17], but cannot be used to obtain our strong law of

large number.

One delicate part in Theorem 1.1 is establishing convergence for the scaled expected capacity. This
is Proposition 3.1 of Section 3. From (1.2), the expected capacity of a Wiener sausage is equivalent
to the probability that two Wiener sausages intersect. Estimating such a probability has a long
tradition: pioneering works were produced by Dvoretzky, Erdös and Kakutani [5] and Aizenman
[1]; Aizenman’s results have been subsequently improved by Albeverio and Zhou [2], Peres [18],
Pemantle, Peres and Shapiro [17] and Khoshnevisan [9] (and references therein). In the discrete
setting, the literature is even larger and older, and analogous results are presented in Lawler’s
comprehensive book [11].

As a byproduct of our arguments, we improve a Large Deviation estimate of Erhard and Poisat [7],
and obtain a nearly correct estimate of the variance, which will have to be improved for studying
the fluctuations.

Proposition 1.4. There is a constant c > 0, such that for any 0 < ε < 1, there exists κ = κ(ε)
such that for any t large enough

P
(

Cap(W1[0, t])− E[Cap(W1[0, t])] ≥ ε
t

log t

)
≤ exp

(
− c ε2tκ

)
. (1.8)

Moreover, there exists a constant C > 0, such that for t large enough,

var
(
Cap(W1[0, t])

)
≤ C (log log t)9

t2

(log t)4
. (1.9)

Remark 1.5. We do not know what is the correct speed in the large deviation estimate (1.8). The
analogous result for the volume of the sausage in d = 2 (or even the size of the range of a random
walk) is not known. On the other hand, the correct order for the variance should be t2/(log t)4, as
was proved in the discrete setting [3]. Thus our bound in (1.9) is off only by a (log log t)9 term.

One key step of our investigation is a simple formula for the capacity of the sausage which is neither
asymptotic nor variational. In Section 2.2, we deduce a decomposition formula for the capacity of
the union of two sets in terms of the sum of capacities and a cross-term: for any two compact sets
A and B, and for any r > 0 with A ∪B ⊂ B(0, r),

Cap(A ∪B) = Cap(A) + Cap(B)− χr(A,B)− εr(A,B), (1.10)

with

χr(A,B) = 2π2 r2 · 1

|∂B(0, r)|

∫
∂B(0,r)

(Pz(HA < HB <∞) + Pz(HB < HA <∞)) dz, (1.11)

and

εr(A,B) = 2π2r2 · 1

|∂B(0, r)|

∫
∂B(0,r)

Pz(HA = HB <∞) dz, (1.12)

where we use the notation B(0, r) for the ball of radius r and ∂B(0, r) for its boundary. In particular
εr(A,B) ≤ Cap(A ∩ B). The decomposition formula (1.10) is of a different nature to the one
presented in [3] for the discrete setting. As an illustration, a key technical estimate here concerns
the cross term χr(A,B) where A and B are independent sausages. In order to bound its first
moment, we prove an estimate on the probability of intersection of a Wiener sausage by two other
independent Brownian motions.
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Proposition 1.6. Let β, γ and γ̃ be three independent Brownian motions. For any α > 0 and
c ∈ (0, 1), there exist positive constants C and t0, such that for all t > t0 and all z, z′ ∈ R4, with√
t · (log t)−α ≤ ‖z‖, ‖z′‖ ≤

√
t · (log t)α,

P0,z,z′(W1[0, t]∩γ[0,∞) 6= ∅, W1[0, t]∩ γ̃[0,∞) 6= ∅) ≤ C (log log t)4

(log t)2
(1∧ t

‖z′‖2
) (1∧ t

‖z‖2
), (1.13)

where P0,z,z′ means that β, γ and γ̃ start from 0, z and z′ respectively.

We note that the problem of obtaining a law of large numbers for the capacity of the Wiener sausage
has been raised recently by van den Berg, Bolthausen and den Hollander [19] in connection with
the torsional rigidity of the complement of the Wiener sausage on a torus.

The paper is organised as follows. Section 2 contains preliminary results: in Section 2.1 we gather
some well-known facts about Brownian motion, and in Section 2.2 we prove (1.10) and compare the
capacity of a Wiener sausage to its volume. In Section 3 we prove the asymptotic for the expected
capacity. In Section 4, we deduce our large deviation bounds (1.4). In Section 5 we provide some
intersection probabilities of a Wiener sausage by another Brownian motion, and deduce a second
moment bound of the cross-terms χr appearing in the decomposition (1.10). Finally, we prove
Theorem 1.1 in Section 6.

2 Preliminaries

2.1 Notation and basic estimates

We denote by Pz the law of a Brownian motion starting from z, and simply write P when z is the
origin. Likewise Pz,z′ will denote the law of two independent Brownian motions starting respectively
from z and z′, and similarly for Pz,z′,z′′ . For any x ∈ R4 and r > 0, we denote by B(x, r) the ball
of radius r centered at x. We write |A| for the Lebesgue measure of a Borel set A. We denote by
‖ · ‖ the Euclidean norm and by ps(x, y) the transition kernel of the Brownian motion:

ps(x, y) =
1

4π2s2
e−
‖x−y‖2

2s = ps(0, y − x).

The Green’s function is defined by

G(x, y) =

∫ ∞
0

ps(x, y) ds := G(y − x).

We recall, see Theorem 3.33 in [16], that for all x 6= 0,

G(x) =
1

2π2
· 1

‖x‖2
. (2.1)

We will also write

Gt(x) :=

∫ t

0
ps(0, x) dx.

Remember now that for any z ∈ R4, with ‖z‖ > r (see Corollary 3.19 in [16]),

Pz
(
HB(0,r) <∞

)
=

r2

‖z‖2
. (2.2)
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We also need the following well-known estimates. There exist positive constants c and C, such that
for any t > 0 and r > 0,

P
(

sup
s≤t
‖βs‖ > r

)
≤ C · exp(−c r2/t), (2.3)

and

P
(

sup
s≤t
‖βs‖ ≤ r

)
≤ C · exp(−c t/r2). (2.4)

Finally, we recall the basic result (see Corollary 8.12 and Theorem 8.27 in [16]):

Lemma 2.1. Let A be a compact set in R4. Then for any x ∈ R4\A,

Px(HA <∞) ≤ 1

2π2 d(x,A)2
· Cap(A),

where d(x,A) := inf{‖x− y‖ : y ∈ A}.

2.2 On capacity

We first give a representation formula for the capacity of a set, which has the advantage of not
being given as a limit. If A is a compact subset of R4, with A ⊂ B(0, r) for some r > 0, then

Cap(A) = lim
‖x‖→∞

Px(HA <∞)

G(x)
= lim
‖x‖→∞

Px
(
H∂B(0,r) <∞

)
G(x)

·
∫
∂B(0,r)

Pz(HA <∞) dρx(z)

= 2π2 r2 ·
∫
∂B(0,r)

Pz(HA <∞) dλr(z), (2.5)

where ρx is the law of the Brownian motion starting from x at time H∂B(0,r), conditioned on
this hitting time being finite, and λr is the uniform measure on ∂B(0, r). The second equality
above follows from the Markov property, and the last equality expresses the fact that the harmonic
measure from infinity of a ball, which by Theorem 3.46 in [16] is also the weak limit of ρx as x goes
to infinity, is the uniform measure on the boundary of the ball.

The decomposition formula (1.10) for the capacity of the union of two sets follows immediately
using (2.5).

Now we state a lemma which bounds the capacity of the intersection of two Wiener sausages by
the volume of the intersection of larger sausages.

Lemma 2.2. Let W and W̃ be two independent Wiener sausages. Then, almost surely, for all t > 0,

Cap(W1[0, t]) ≤ C1 · |W4/3[0, t]|, (2.6)

and
Cap(W1[0, t] ∩ W̃1[0, t]) ≤ C1 · |W4[0, t] ∩ W̃4[0, t]|. (2.7)

with C1 = Cap(B(0, 4))/|B(0, 4/3)|. Moreover, there is a constant C2 > 0, such that for all t ≥ 2,

E
[
Cap2(W1[0, t] ∩ W̃1[0, t])

]
≤ C2 (log t)2. (2.8)
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Proof. We start with inequality (2.6). Let (B(xi, 4/3), i ≤ M) be a finite covering of W1[0, t]
by open balls of radius 4/3 whose centers are all assumed to belong to β[0, t], the trace of the
Brownian motion driving W1[0, t]. Then, by removing one by one some balls if necessary, one can
obtain a sequence of disjoint balls B(xi, 4/3, i ≤ M ′), with M ′ ≤ M , such that the enlarged balls
(B(xi, 4), i ≤M ′) still cover W1[0, t]. Since the capacity is subadditive, one has on one hand

Cap(W1[0, t]) ≤ M ′ · Cap(B(0, 4)),

and on the other hand since the balls B(xi, 4/3) are disjoint and are all contained in W4/3[0, t],

M ′|B(0, 4/3)| ≤ |W4/3[0, t]|.

Inequality (2.6) follows. Inequality (2.7) is similar: start with (B(xi, 4/3), i ≤M) a finite covering

of W1[0, t] ∩ W̃1[0, t] by balls of radius one whose centers are all assumed to belong to β[0, t].
Then, by removing one by one some balls if necessary, one obtain a sequence of disjoint balls
(B(xi, 4/3))i≤M ′ , such that the enlarged balls (B(xi, 4))i≤M ′ cover the set W1[0, t] ∩ W̃1[0, t], and

such that all of them intersect W1[0, t] ∩ W̃1[0, t]. But since the centers (xi) also belong to β[0, t],

all the balls B(xi, 4/3) belong to the enlarged intersection W4[0, t] ∩ W̃4[0, t]. So as before one has
on one hand

Cap(W1[0, t] ∩ W̃1[0, t]) ≤ M ′ · Cap(B(0, 4)),

and on the other hand
|W4[0, t] ∩ W̃4[0, t]| ≥ M ′|B(0, 4/3)|.

We now prove (2.8). We start with a first moment bound (see [8] for more precise asymptotics):

E
[
|W1[0, t] ∩ W̃1[0, t]|

]
≤ C log t. (2.9)

This estimate is easily obtained: indeed by definition

E
[
|W1[0, t] ∩ W̃1[0, t]|

]
=

∫
R4

P
(
HB(z,1) < t

)2
dz, (2.10)

and then (2.9) follows from (2.2) and (2.3). For the second moment, we write similarly

E
[
|W1[0, t] ∩ W̃1[0, t]|2

]
=

∫
R4

∫
R4

P
(
HB(z,1) < t,HB(z′,1) < t

)2
dz dz′. (2.11)

We now have

P
(
HB(z,1) < t,HB(z′,1) < t

)
= P

(
HB(z,1) < HB(z′,1) < t

)
+ P

(
HB(z′,1) < HB(z,1) < t

)
,

and hence taking the square on both sides gives

P
(
HB(z,1) < t,HB(z′,1) < t

)2 ≤ 2P
(
HB(z,1) < HB(z′,1) < t

)2
+ 2P

(
HB(z′,1) < HB(z,1) < t

)2
. (2.12)

Let νz denote the hitting distribution of the ball B(z, 1) by a Brownian motion starting from 0.
Then by the strong Markov property we get

P
(
HB(z,1) < HB(z′,1) < t

)
≤ P

(
HB(z,1) < t

)
Pνz
(
HB(z′,1) < t

)
.

Substituting this and (2.12) into (2.11) gives

E
[
|W1[0, t] ∩ W̃1[0, t]|2

]
≤ 4

∫
R4

∫
R4

P
(
HB(z,1) < t

)2 Pνz(HB(z′,1) < t
)2
dz dz′.
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Using (2.10) we now obtain for all z,∫
R4

Pνz
(
HB(z′,1) < t

)2
dz′ = E

[
|W1[0, t] ∩ W̃1[0, t]|

]
.

This together with (2.9) implies

E
[
|W1[0, t] ∩ W̃1[0, t]|2

]
≤ 4E

[
|W1[0, t] ∩ W̃1[0, t]|

]2
≤ 4(C log t)2,

and concludes the proof of the lemma.

3 On the Expected Capacity

3.1 Statement of the result and sketch of proof

The principal result of this section gives the precise asymptotics for the expected capacity.

Proposition 3.1. In dimension four, and for any radius r > 0, we have

lim
t→∞

log t

t
E[Cap (Wr[0, t])] = 4π2. (3.1)

Remark 3.2. The scale invariance of Brownian motion yields in dimension four, for any r > 0,

E[Cap (Wr[0, t])] = r2 E
[
Cap

(
W1[0, t/r

2]
)]
.

Thus, it is enough to prove (3.1) for r = 1.

The proof is based on an idea of Lawler [10] used in the random walk setting. This idea exploits
the fact that the conditional expectation of the number of times when two random walks meet,
conditionally on one of them, is concentrated. Before giving the proof, let us explain its rough
ideas.

We now give an overview of the proof by introducing the necessary key notation and definitions.
We start by discretising the Brownian motion β driving W1. For fixed δ > 0, we record the times
and positions at which β leaves successive balls of radius δ. More precisely, let τ δ0 = 0, and by way
of induction when τ δi <∞, let Zδi = β(τ δi ) and

τ δi+1 = inf{s > τ δi : βs /∈ B(Zδi , δ)}.

It follows from (2.4) that for any i, the stopping time τ δi is almost surely finite. Then, we define
the Wiener sausage associated to the discrete positions by

W δ
r [0, t] :=

⋃
i: τδi ≤t

B(Zδi , r), for all r ≥ 0.

The continuity of the Brownian path implies that ‖Zδi − Zδi−1‖ = δ, almost surely for all i ≥ 1.
Therefore, one has for all δ > 0,

W δ
1 [0, t] ⊆ W1[0, t] ⊆ W δ

1+δ[0, t]. (3.2)
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Moreover, the following scaling relation holds in law,

Cap
(
W δ

1+δ[0, t]
)

(law)
= (1 + δ)d−2 Cap

(
W

δ
1+δ

1

[
0,

t

(1 + δ)2

])
.

Thus, using that the capacity is monotone for inclusion, it is enough to obtain asymptotics for the
expected capacity of W δ

1 [0, t], and then let δ go to zero.

The next step is to cast the expected capacity of W δ
1 [0, t] into a probability of non-intersection

of this discretised Wiener sausage by another Brownian motion β̃, starting from infinity. More
precisely we will show below that

E
[
Cap

(
W δ

1 [0, t]
)]

= lim
‖z‖→∞

1

G(0, z)
· P0,z

(
W δ

1 [0, t] ∩ β̃[0,∞) 6= ∅
)
, (3.3)

which should not come as a surprise, since this formula holds for deterministic sets (1.2) (but one
still need to justify the interchange of limit and expectation). We next introduce the following
stopping time

τ = inf{s ≥ 0 : β̃s ∈W δ
1 [0, t]}, (3.4)

and note that the probability on the right-hand side of (3.3) is just the probability of τ being finite.

Then we introduce a counting measure of the pairs of times at which the two trajectories come
within distance 1

Rδ[0, t] =
∑
i≥0

(
τ δi+1 ∧ t− τ δi ∧ t

) ∫ ∞
0

1(‖β̃s − Zδi ‖ ≤ 1) ds. (3.5)

Observe that τ is finite, if and only if, Rδ[0, t] is nonzero. Therefore the following equality holds

P0,z(τ <∞) =
E0,z

[
Rδ[0, t]

]
E0,z[Rδ[0, t] | τ <∞]

. (3.6)

The estimate of the numerator in (3.6) is established by comparing Rδ[0, t] to a continuous coun-
terpart R[0, t], whose expectation can be computed explicitly and which is defined via

R[0, t] =

∫ ∞
0

ds

∫ t

0
1(‖β̃s − βu‖ ≤ 1) du. (3.7)

More precisely we prove in Lemma 3.3 below (see Subsection 3.2) that for all t > 0,

lim
‖z‖→∞

E0,z[R[0, t]]

G(0, z)
=

π2

2
t, (3.8)

The same limit holds for Rδ[0, t], up to some additional O(1) term. The estimate of the denominator
in (3.6) is more intricate. Consider the random time

σ = inf
{
i ≥ 0 : ‖β̃(τ)− Zδi ‖ ≤ 1

}
. (3.9)

A key observation is that σ is not a stopping time (with respect to any natural filtration), since τ
depends on the whole Wiener sausage W δ

1 [0, t]. In other words conditionally on τ and σ, one cannot

consider the two parts of the trajectories of β̃ and W δ
1 after the times τ and σ respectively, as being

independent 1.

1a mistake that Erdös and Taylor implicitly made in their pioneering work [6], and that Lawler corrected about
twenty years later [10].
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To overcome this difficulty, the main idea (following Lawler) is to use that E[Rδ[0, t] | (βs)s≤t] is
concentrated around its mean value, which is of order log t. As a consequence, even if the trajectory
of β after time τ δσ is not independent of β̃[τ,∞), we still have that E0,z[R

δ | β] estimated in the
time period [τ δσ , t], is close to its mean value for typical values of σ. Another difficulty then is to
control the probability for σ to be typical with this respect (what Lawler calls a good σ), and the
solution is inspired by another nice argument of Lawler. But we refer to the proof below for more
details.

However, there are some small additional issues here. Unlike in the discrete case, Zσ and β̃(τ) are
not equal. In particular E0,z[R

δ[0, t] | β, (β̃s)s≤τ ] is not distributed as E0,0[R
δ[0, t − τ δσ ] | β], but

as E0,x[Rδ[0, t − τ δσ ] | β], with x = β̃(τ) − Zσ, which is nonzero. However, since we still have that
‖x‖ = 1, one can compare this expectation, with the one when x = 0 and show that their difference
is negligible.

Another point is that the argument described above requires log t and log(t− τ δσ) to be equivalent,
at least when we look for an upper bound of the probability that τ is finite. A simple way to
overcome this difficulty is to work with a longer period, and use instead of (3.6) the inequality

P0,z(τ <∞) ≤
E0,z

[
Rδ[0, t(1 + ε)]

]
E0,z[Rδ[0, t(1 + ε)] | τ <∞]

,

which holds for any fixed positive ε, and then let ε go to zero. This concludes our overview of the
proof, which now starts.

3.2 Proof of Proposition 3.1

The first thing is to prove (3.3). For any real ρ > 0, with dλρ denoting the uniform probability
measure on the boundary of B(0, ρ), we have shown in (2.5) that

Cap (W1[0, t] ∩ B(0, ρ)) =
1

G(0, 2ρ)

∫
∂B(0,2ρ)

P0,z

(
W1[0, t] ∩ B(0, ρ) ∩ β̃[0,∞) 6= ∅

∣∣ W1[0, t]
)
dλ2ρ(z).

Taking expectation on both sides we obtain

E[Cap (W1[0, t] ∩ B(0, ρ))] =
1

G(0, 2ρ)

∫
P0,z

(
W1[0, t] ∩ B(0, ρ) ∩ β̃[0,∞) 6= ∅

)
dλ2ρ(z).

By rotational invariance of β and β̃, we get that the probability appearing in the integral above is
the same for all z ∈ ∂B(0, 2ρ). Writing 2ρ = (2ρ, 0, . . . , 0) we get

E[Cap (W1[0, t] ∩ B(0, ρ))] =
1

G(0, 2ρ)
P0,2ρ

(
W1[0, t] ∩ B(0, ρ) ∩ β̃[0,∞) 6= ∅

)
=

1

G(0, 2ρ)
P0,2ρ

(
W1[0, t] ∩ β̃[0,∞) 6= ∅

)
+O

(P(W1[0, t] ∩ Bc(0, ρ) 6= ∅)

G(0, 2ρ)

)
.

Using that the O term appearing above tends to 0 as ρ→∞ and invoking monotone convergence
proves (3.3).

Now in view of (3.6) we need to estimate the expectation of Rδ[0, t] conditionally on τ being finite.
To this end, we take the expectation conditionally on (βs)s≥0 and introduce the following random
variables:

Dx[0, t] = E0,x[R[0, t] | β] and Dδ
x[0, t] = E0,x

[
Rδ[0, t] | β

]
.

9



Note that if we set

G∗(x, y) =

∫
B(y,1)

G(x, z) dz = G∗(0, y − x),

then,

Dx[0, t] =

∫
R4

dy

∫ t

0
G(x, y)1(‖y − βs‖ ≤ 1) ds =

∫ t

0
G∗(x, βs) ds, (3.10)

and

Dδ
x[0, t] =

∑
i≥0

(τ δi+1 ∧ t− τ δi ∧ t)G∗(x, Zδi ). (3.11)

To simplify notation, we write
d(t) = E[D0[0, t]],

since this quantity will play an important role in the rest of the proof. Now before we continue
with the proof we gather here some technical results that will be needed.

The first result contains (3.8) and also provides an estimate of the difference between Rδ[0, t]
and R[0, t].

Lemma 3.3. There exists a constant C > 0, such that for all δ ≤ 1, z 6= 0 and t ≥ 1,∣∣∣∣∣E0,z

[
Rδ[0, t]

]
G(0, z)

− E0,z[R[0, t]]

G(0, z)

∣∣∣∣∣ ≤ C

(
1 +

t

‖z‖
+ ‖z‖ e−

‖z‖2
8t

)
.

Moreover, for all t > 0,

lim
‖z‖→∞

E0,z[R[0, t]]

G(0, z)
=

π2

2
t.

The second result deals with the first and second moments of D0[0, t].

Lemma 3.4. One has

lim
t→∞

1

log t
E[D0[0, t]] =

1

8
,

and there exists a constant C > 0, such that for all t ≥ 2,

E
[
D0[0, t]

2
]
≤ C (log t)2. (3.12)

The third result shows that Dδ
x[0, t] is uniformly close to D0[0, t], when ‖x‖ is smaller than one:

Lemma 3.5. Let

ζ =

∫ ∞
0

1

‖βs‖3 ∨ 1
ds. (3.13)

Then the following assertions hold.

(i) There exists a constant λ > 0, such that

E[exp(λ ζ)] < ∞.

10



(ii) There exists a constant C > 0, so that for all δ ≤ 1 and t > 0, almost surely,

sup
‖x‖≤1

∣∣∣Dδ
x[0, t]−D0[0, t]

∣∣∣ ≤ C ζ.

The next result gives some large deviation bounds for D0[0, t], and shows that it is concentrated.

Lemma 3.6. For any ε > 0, there exists c = c(ε) > 0, such that for t large enough,

P(|D0[0, t]− d(t)| > εd(t)) ≤ exp
(
− c (log t)1/3

)
,

where we recall that d(t) = E[D0[0, t]].

Finally the last preliminary result we should need is the following elementary fact:

Lemma 3.7. There exists a constant C > 0, so that for all k ∈ N and z ∈ R4,

P
(

inf
k≤s≤k+1

‖β̃s − z‖ ≤ 1

)
≤ C

∫ k+2

k
P
(
‖β̃u − z‖ ≤ 2

)
du.

The proofs of these five lemmas are postponed to Sections 3.3 and 3.4, and assuming them one can
now finish the proof of Proposition 3.1.

Denote by (Fβs )s≥0 and (F β̃s )s≥0 the natural filtrations of β and β̃ respectively. Recall the definition

(3.4) of τ , and then define the sigma-field Gτ := F β̃τ ∨ (Fβs )s≥0. Next, recall the definition (3.5) of
Rδ[0, t], and observe that on the event {τ <∞}, we have

E0,z

[
Rδ[0, t] | Gτ

]
=
∑
j≥σ

(
τ δj+1 ∧ t− τ δj ∧ t

)
G∗(β̃(τ)− Zδσ, Zδj − Zδσ), (3.14)

since indices j smaller than σ contribute zero in the sum by the definition of σ.

Now recall that our goal is to estimate the probability of τ being finite. We divide the proof in two
parts, one for the lower bound and another one for the upper bound, and give two definitions of
good σ accordingly.

Proof of the lower bound. We fix some ε > 0, and define an integer i to be good if

sup
‖x‖≤1

∑
j≥i

(τ δj+1 ∧ (τ δi + t)− τ δj ∧ (τ δi + t))G∗(x, Zδj − Zδi ) ≤ (1 + ε) d(t),

and otherwise we say that i is bad. Observe that the event {i good} is σ((βs − β(τ δi ))s≥τδi
)-

measurable, and in particular is independent of (Zδk)k≤i. Note also that it depends in fact on t
and ε, but since they are kept fixed in the rest of the proof this should not cause any confusion.
Moreover, by the strong Markov property applied to τ δi , one has (recall (3.11))

P0,z(i bad) = P

(
sup
‖x‖≤1

Dδ
x[0, t] > (1 + ε) d(t)

)
≤ C exp(−c (log t)1/3), (3.15)

for some positive constants c and C, where the last inequality follows from Lemmas 3.4, 3.5 and 3.6.
When τ is finite, then the event {σ good} can be written as

{σ good} =
⋃
i≥0
{σ = i} ∩ {i good}.
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We also denote the complementary event as {σ bad}. A subtle and difficult point here is that
one cannot proceed as in (3.15). Indeed, the problem is that the events {σ = i} and {i bad} are
not independent. So the idea of Lawler, see [11, page 101], in the random walk setting, was to
decompose the event {σ bad} into all the possible values for σ and τ (in our case we will discretise τ
and consider all the possible values of its integer part), and loosely replace the event {σ = i, τ = k}
by the event that the two walks are at the same position at times i and k respectively. The interest of
doing so is that now the latter event is independent of the event {i bad} and probabilities factorise.
The remaining part is a double sum which is equal (in the discrete case) to the expected number
of pairs of times the two walks coincide. In our case, Lemma 3.7 will show that the remaining
double sum can be compared with the expectation of Rδ[0, t]. As it turns out, we will see that this
argument is not too loose, since the probability of i being bad is sufficiently small: it decays as a
stretched exponential in log t, as (3.15) tells us. But we will come back to this in more detail a bit
later, see (3.19) and (3.22) below.

For the moment, just observe that the event {σ good} is Gτ -measurable. As a consequence, one
has

E0,z[R
δ[0, t]1(τ <∞, σ good)] = E0,z

[
E0,z[R

δ[0, t] | Gτ ] · 1(τ <∞, σ good)
]

≤ (1 + ε) d(t)P0,z(τ <∞, σ good), (3.16)

where the last inequality follows from (3.14), the definition of σ good and the easy fact that

τ δj+1 ∧ t− τ δj ∧ t ≤ τ δj+1 ∧ (τ δi + t)− τ δj ∧ (τ δi + t).

Therefore, we can write

P0,z(τ <∞) ≥ P0,z(τ <∞, σ good)

=
E0,z

[
Rδ[0, t]1(τ <∞, σ good)

]
E0,z[Rδ[0, t] | τ <∞, σ good]

≥ 1

(1 + ε)d(t)
· E0,z

[
Rδ[0, t]1(τ <∞, σ good)

]
. (3.17)

The last term above is estimated through

E0,z

[
Rδ[0, t]1(τ <∞, σ good)

]
= E0,z

[
Rδ[0, t]

]
− E0,z

[
Rδ[0, t]1(τ <∞, σ bad)

]
. (3.18)

Now the idea for estimating the expectation of Rδ[0, t] on the event σ bad, is to use the strategy
of Lawler, described earlier. Using furthermore (3.14), and letting y = β̃(τ)− Zδσ, we can write

E0,z

[
Rδ[0, t]1(τ <∞, σ bad )

]
= E0,z

[
E0,z[R

δ[0, t] | Gτ ]1(τ <∞, σ bad)
]

= E0,z

∑
j≥σ

(τ δj+1 ∧ t− τ δj ∧ t)G∗(y, Zδj − Zδσ)

 1(τ <∞, σ bad)


=

∞∑
k=0

∞∑
i=0

E0,z

∑
j≥i

(τ δj+1 ∧ t− τ δj ∧ t)G∗(y, Zδj − Zδi )

 1([τ ] = k, σ = i, i bad)


≤

∞∑
k=0

∞∑
i=0

E0,z

∑
j≥i

(τ δj+1 ∧ t− τ δj ∧ t)G∗(y, Zδj − Zδi )

 1
(

inf
k≤s≤k+1

‖β̃s − Zδi ‖ ≤ 1, τ δi ≤ t, i bad

)
12



≤ E

[(
sup
‖x‖≤1

Dδ
x[0, t]

)
1(0 bad)

] ∞∑
k=0

∞∑
i=0

P0,z

(
inf

k≤s≤k+1
‖β̃s − Zδi ‖ ≤ 1, τ δi ≤ t

)
, (3.19)

using the strong Markov property for β at time τ δi for the last inequality. Using Cauchy-Schwarz,
Lemmas 3.4 and 3.5 and (3.15) we upper bound the expectation appearing on the last line above
to get

E

[(
sup
‖x‖≤1

Dδ
x[0, t]

)
1(0 bad)

]
≤ C(log t)2 exp(−c (log t)1/3), (3.20)

for some positive constants c and C. The last double sum in (3.19) is dealt with using Lemma 3.7.
But before we proceed with it, let us define

Rδ2[0, t] :=
∑
i≥0

(τ δi+1 ∧ t− τ δi ∧ t)
∫ ∞
0

1(‖β̃s − Zδi ‖ ≤ 2) ds.

Note that E[τ δi+1 ∧ t− τ δi ∧ t] ≤ δ2/4, for all i ≥ 0. Thus

E0,z[R
δ
2[0, t]] ≤

δ2

4

∑
i≥0

∫ ∞
0

P(‖β̃s − Zδi ‖ ≤ 2, τ δi ≤ t) ds.

Together with Lemma 3.7, we obtain

∞∑
k=0

∞∑
i=0

P0,z

(
inf

k≤s≤k+1
‖β̃s − Zδi ‖ ≤ 1, τ δi ≤ t

)
≤ C

δ2
E0,z[R

δ
2[0, t]].

Moreover, by Brownian scaling, one can see that Rδ2[0, t] is equal in law to 16Rδ/2[0, t/4]. Therefore,
it follows from Lemma 3.3 that there exists a constant C > 0, such that for all t ≥ 1 and δ ≤ 1,

lim sup
‖z‖→∞

E0,z[R
δ
2[0, t]]

G(0, z)
≤ C t.

Combining this with Lemma 3.3, (3.17), (3.18), (3.19) and (3.20) gives

lim inf
‖z‖→∞

P0,z(τ <∞)

G(0, z)
≥ π2

2(1 + ε)
· t

d(t)
·
(

1− C

δ2
exp(−c (log t)1/3)

)
,

for all t large enough. Using in addition Lemma 3.4, and since the above estimate holds for all
ε > 0, we get (recall (3.2) and (3.3))

lim inf
t→∞

log t

t
· E[Cap(W1[0, t])] ≥ 4π2.

Proof of the upper bound.

We again fix ε ∈ (0, 1) and we define an integer i to be good if

inf
‖x‖≤1

∑
j≥i

(τ δj+1 ∧ (τ δi + εt)− τ δj ∧ (τ δi + εt))G∗(x, Zδj − Zδi ) ≥ (1− ε) d(t),
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and otherwise we say that i is bad. The probability the latter happens satisfies

P0,z(i bad) = P
(

inf
‖x‖≤1

Dδ
x[0, εt] < (1− ε) d(t)

)
≤ C exp(−c (log t)1/3), (3.21)

where again the last inequality follows from Lemmas 3.4, 3.5 and 3.6.

We write next
P0,z(τ <∞) = P0,z(τ <∞, σ good) + P0,z(τ <∞, σ bad) .

Let us treat first the probability with the event σ good. We have

P0,z(τ <∞, σ good) ≤
E0,z

[
Rδ[0, t(1 + ε)]

]
E0,z[Rδ[0, t(1 + ε) | τ <∞, σ good]

.

Using the same argument as for the lower bound, the new definition of good σ and the fact that
on the event {τ δi ≤ t} we have

τ δj+1 ∧ (t+ εt)− τ δj ∧ (t+ εt) ≥ τ δj+1 ∧ (τ δi + εt)− τ δj ∧ (τ δi + εt),

we see that

E0,z

[
Rδ[0, t(1 + ε)]

∣∣∣ τ <∞, σ good
]
≥ (1− ε) d(t).

Together with Lemma 3.3 this provides the upper bound for the term

lim sup
‖z‖→∞

P0,z(τ <∞, σ good)

G(0, z)
.

Let us treat now the event σ bad. Using the same argument as for the lower bound and in particular
(3.21), we obtain

P0,z(τ <∞, σ bad) =

∞∑
k=0

∞∑
i=0

P0,z(σ = i, [τ ] = k, i bad)

≤
∞∑
k=0

∞∑
i=0

P0,z

(
inf

k≤s≤k+1
‖β̃s − Zδi ‖ ≤ 1, τ δi ≤ t, i bad

)

≤
∞∑
k=0

∞∑
i=0

P0,z

(
inf

k≤s≤k+1

∥∥∥β̃s − Zδi ∥∥∥ ≤ 1, τ δi ≤ t
)
P(i bad)

≤ C

δ2
E0,z

[
Rδ2[0, t]

]
exp(−c (log t)1/3),

(3.22)

for some positive constants c and C. We conclude similarly as for the lower bound that

lim sup
t→∞

log t

t
· E[Cap (W1[0, t])] ≤ 4π2,

and this completes the proof of Proposition 3.1. �
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3.3 Proofs of Lemma 3.3, 3.4, 3.5 and 3.7

Before we start with the proofs, it will be convenient to introduce some new notation. For A ⊂ R4

measurable, we denote by `(A) the total time spent in the set A by the Brownian motion β:

`(A) :=

∫ ∞
0

1(βs ∈ A) ds.

We also define the sets A0 = B(0, 1), and

Ai := B(0, 2i) \ B(0, 2i−1), for i ≥ 1.

Note that for any A and k ≥ 1, one has using the Markov property

E[`(A)k] = k!E
[∫

s1≤···≤sk
1(βs1 ∈ A, . . . , βsk ∈ A) ds1 . . . dsk

]
≤ k!

(
sup

x∈A∪{0}
Ex[`(A)]

)k
. (3.23)

Proof of Lemma 3.5. Let us start with part (i). Observe first that

ζ ≤
∞∑
i=0

`(Ai)

23(i−1)
.

Using Jensen’s inequality and that `(Ai) has the same distribution as 22(i−1)`(A1) for all i ≥ 1, we
obtain

E[ζk] ≤ 4k E

( ∞∑
i=0

1

2i+1

`(Ai)

22(i−1)

)k
≤ 4k

∞∑
i=0

1

2i+1
E

[(
`(Ai)

22(i−1)

)k]
≤ 16k E

[
`(A0)

k
]

+ 4k E
[
`(A1)

k
]

≤ Ck k!,

for some constant C > 0, where we used (3.23) at the last line. The first part of the lemma follows.

Now we prove part (ii). To simplify notation, write G∗(z) = G∗(0, z), and recall that by definition

G∗(z) =

∫
B(z,1)

G(w) dw.

Then recall that the Green’s function G is harmonic on R4 r {0}, so it satisfies the mean-value
property on this domain. This implies that if ‖z‖ > 1, then G∗(z) = |B(0, 1)| · G(0, z). Recall
furthermore that |B(0, 1)| = π2/2, so that G∗(z) = (π2/2) ·G(z) = 1/(4‖z‖2), when ‖z‖ > 1. Now
suppose that ‖u‖ > 2 and ‖x‖ ≤ 1. Then

|G∗(u+ x)−G∗(u)| = 1

4

∣∣∣∣ 1

‖u+ x‖2
− 1

‖u‖2

∣∣∣∣ ≤ 1 + 2 ‖u‖
‖u+ x‖2 ‖u‖2

≤ C

‖u‖3
.

Since in addition G∗ is bounded on B(0, 3), we deduce that there exists C > 0, so that for all
u ∈ R4,

sup
‖x‖≤1

|G∗(u+ x)−G∗(u)| ≤ C

‖u‖3 ∨ 1
. (3.24)
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Then it follows from the formulas (3.10) and (3.11) for Dx[0, t] and Dδ
x[0, t] respectively, that

sup
‖x‖≤1

|Dx[0, t]−D0[0, t]| ≤ C

∫ t

0

1

‖βu‖3 ∨ 1
du,

and

sup
‖x‖≤1

|Dδ
x[0, t]−Dδ

0[0, t]| ≤ C
∑
i≥0

∫ τδi+1

τδi

1

‖β(τ δi )‖3 ∨ 1
ds.

Moreover, by definition of the times τ δi one has ‖βs − β(τ δi )‖ ≤ δ, for all s ∈ [τ δi , τ
δ
i+1]. Therefore

for all such s, by the triangle inequality ‖β(τ δi )‖ ≥ ‖βs‖ − δ ≥ ‖βs‖/2, as long as ‖βs‖ ≥ 2δ. Since
δ ≤ 1, it follows that

sup
‖x‖≤1

|Dδ
x[0, t]−Dδ

0[0, t]| ≤ C

(∫ ∞
0

1(‖βs‖ ≤ 2δ) ds+

∫ ∞
0

1

‖βs‖3 ∨ 1
ds

)
≤ 9Cζ.

It remains to compare Dδ
0[0, t] with D0[0, t]. But since it makes no difference in the proof, and since

in addition we will need it in the proof of Lemma 3.3, we compare in fact Dδ
z[0, t] with Dz[0, t], for

general z ∈ R4. We now have

|Dδ
z[0, t]−Dz[0, t]| ≤

∑
i≥0

∫ τδi+1∧t

τδi ∧t
|G∗(z + βs)−G∗(z + β(τ δi ))| ds.

Then using again that ‖βs − β(τ δi )‖ ≤ δ, for all s ∈ [τ δi , τ
δ
i+1], and (3.24) we get for all δ ≤ 1,

|Dδ
z [0, t]−Dz[0, t]| ≤ C

∑
i≥0

∫ τδi+1∧t

τδi ∧t

1

‖z + βs‖3 ∨ 1
ds ≤ C

∫ t

0

1

‖z + βs‖3 ∨ 1
ds. (3.25)

Taking z = 0, and combining this with the previous estimates proves part (ii) of the lemma.

Proof of Lemma 3.3. We start with the first statement of the lemma. Using (3.25) we obtain∣∣∣∣E0,z[R
δ[0, t]]− E0,z[R[0, t]]

G(0, z)

∣∣∣∣ ≤ E
[∣∣∣∣Dδ

z[0, t]−Dz[0, t]

G(0, z)

∣∣∣∣] ≤ C E

[∫ t

0

‖z‖2

‖z + βs‖3 ∨ 1
ds

]
. (3.26)

By direct calculations we now get

E

[∫ t

0

‖z‖2

‖z + βs‖3 ∨ 1
ds

]
=

∫
R4

∫ t

0

1

(2πs)2
‖z‖2

‖z + x‖3 ∨ 1
e−
‖x‖2
2s ds dx

=

∫
R4

1

2π2
‖z‖2

‖z + x‖3 ∨ 1

1

‖x‖2
e−
‖x‖2
2t dx

≤ C

(
1 +

t

‖z‖
+ ‖z‖ e−

‖z‖2
8t

)
and this now completes the proof of the first part of the lemma.

Let us now prove the second part. Note first that

E0,z[R[0, t]] =

∫
R4

G∗(0, z − x)Gt(x) dx, (3.27)
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with Gt(x) :=
∫ t
0 ps(0, x) ds. Moreover, as we saw in the proof of the previous lemma, G∗(0, z) =

(π2/2) · G(0, z), when ‖z‖ > 1. Therefore for any fixed x, G∗(z − x)/G(z) converges to π2/2, as
‖z‖ → ∞. Furthermore, using Fubini we can see that

∫
Gt(0, x) dx = t. We now explain why we

can interchange the limit as z goes to infinity and the integral in (3.27).

Indeed, for any z satisfying ‖z‖ ≥ 1, let Fz = {x : ‖z− x‖ ≤ ‖z‖/2}. Using standard properties of
the Brownian motion, we obtain for positive constants C and C ′ independent of z,∫

Fz

G∗(z − x)

G(z)
Gt(x) dx ≤ C ‖z‖2

∫
‖x‖≥‖z‖/2

Gt(x) dx = C ‖z‖2
∫ t

0
P(‖βs‖ ≥ ‖z‖/2) ds

≤ C24 ‖z‖2
∫ t

0

E[‖βs‖4]
‖z‖4

ds ≤ C ′
t3

‖z‖2
.

On the other hand on R4\Fz, the ratio G∗(z−x)/G(z) is upper bounded by a constant, and hence
one can apply the dominated convergence theorem. We conclude that, for any t > 0,

lim
‖z‖→∞

E0,z[R[0, t]]

G(0, z)
=

π2

2
t.

Proof of Lemma 3.4. One has by integrating first with respect to β̃, and using thatG is harmonic
on R4 r {0},

E[D0[0, t]] = E
[∫ ∞

0
du

∫ t

0
ds1(‖βs − β̃u‖ ≤ 1)

]
=

∫ t

0
E

[∫
B(0,1)

G(βs − z) dz

]
ds

=
π2

2

∫ t

0
E[G(βs)1(‖βs‖ > 1)] ds + O

(∫ t

0
P(‖βs‖ ≤ 1) ds

)
=

π2

2

∫ t

0

∫
‖x‖>1

G(x)

2π2s2
e−
‖x‖2
2s dx ds + O(1)

=
1

8π2

∫
‖x‖>1

1

‖x‖4
e−
‖x‖2
2t dx + O(1),

applying Fubini at the last line. Using now a change of variable the last integral is equal to

1

8π2

∫
‖x‖>1

1

‖x‖4
e−
‖x‖2
2t dx =

1

8π2

∫ ∞
1

2π2ρ3

ρ4
e−

ρ2

2t dρ =
1

4

∫ ∞
1√
t

1

r
e−

r2

2 dr

=
1

4

∫ 1

1√
t

1

r
dr +O(1) =

log t

8
+O(1).

It remains to upper bound the second moment of D0[0, t]. Recalling (3.10), and by using the
Markov property, we get

E[D0[0, t]
2] = E

[∫ t

0

∫ t

0
G∗(βs)G

∗(βs′) ds ds
′
]

= 2

∫
0≤s≤s′≤t

E[G∗(βs)G
∗(βs′)] ds ds

′

17



≤ 2

∫ t

0
dsE

[
G∗(βs)E

[∫ t

0
G∗(βs, βs′) ds

′ | βs
]]

≤ 2E[D0[0, t]] ·
(

sup
z∈R4

E[Dz[0, t]]

)
. (3.28)

Now a simple computation shows that for any z ∈ R4 and t > 0,

P(‖βt − z‖ ≤ 1) ≤ P(‖βt‖ ≤ 1).

Using next that if β and β̃ are two independent standard Brownian motions, then βu − β̃s equals
in law βu+s, for any fixed positive u and s, we deduce that also for any z ∈ Z4,

P0,z(‖βu − β̃s‖ ≤ 1) = P0,0(‖βu − β̃s − z‖ ≤ 1) ≤ P0,0(‖βu − β̃s‖ ≤ 1),

where P0,z denotes the law of two independent Brownian motions β and β̃ starting respectively
from 0 and z. In other terms, one has

E[Dz[0, t]] ≤ E[D0[0, t]] ,

for all z ∈ R4. Together with (3.28), this shows that

E[D0[0, t]
2] ≤ 2E[D0[0, t]]

2,

which concludes the proof, using also the first part of the lemma.

Proof of Lemma 3.7. Let

τk,z := inf{s ∈ [k, k + 1] : ‖β̃s − z‖ ≤ 1}.

Note that almost surely,

1
(
τk,z ≤ k + 1, sup

0≤u≤1
‖β̃(τk,z + u)− β̃(τk,z)‖ ≤ 1

)
≤
∫ k+2

k
1(‖β̃s − z‖ ≤ 2) ds, (3.29)

just because when the indicator function on the left-hand side equals 1, we know that β̃ remains
within distance at most 2 from z during a time period of length at least 1. Now, we can use the
strong Markov property at time τk,z to obtain

P
(
τk,z ≤ k + 1, sup

0≤u≤1
‖β̃(τk,z + u)− β̃(τk,z)‖ ≤ 1

)
= P(τk,z ≤ k + 1) · P

(
sup

0≤u≤1
‖β̃u‖ ≤ 1

)
.

Thus, the lemma follows after taking expectation in (3.29), with C = 1/P
(

sup0≤u≤1 ‖β̃u‖ ≤ 1
)

,

which is a positive and finite constant.

3.4 Proof of Lemma 3.6

The idea of the proof is to show that D0[0, t] is close to a sum of order log t i.i.d. terms with
enough finite moments (to be more precise we will see that the square root of each of these terms
has some finite exponential moment), and then apply standard concentration results. This idea
was also guiding Lawler’s intuition in the discrete setting, as he explains in his book [11] p.98, in
order to understand why D0[0, t] should be concentrated. Since he was not looking for sharper
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estimates, he just showed that the variance of (the analogue in the discrete setting of) D0[0, t] was
of order log t, as its mean. But he did it by direct computations, without pushing further this idea
of viewing D0[0, t] as a sum of i.i.d. terms. Here we will make it more precise (taking advantage
of the continuous setting and of the scaling property of the Brownian motion) and deduce some
better bounds. In fact we do not really need the full strength of Lemma 3.6. However, having just
a control of the variance would not be sufficient for the proof; we need at least a good control of
the eighth centered moment. Since this is not much more difficult or longer to obtain, we prove
the stronger result stated in the lemma instead.

First, let us define the sequence of stopping times (τi)i≥0 by

τi := inf{s ≥ 0 : ‖βs‖ > 2i},

for all i ≥ 0. Then set for i ≥ 0,

Yi :=

∫ τi+1

τi

G(βs) ds,

and for n ≥ 0,

Dn :=

n∑
i=0

Yi.

Note that in dimension four, for any positive real λ and x ∈ R4, one has λ2G(λx) = G(x).
Therefore using the scaling property of the Brownian motion, we see that the Yi’s are independent
and identically distributed. The following lemma shows that Y0 has sufficiently small moments,
and as a consequence that Dn is concentrated. We postpone its proof.

Lemma 3.8. There exists a positive constant λ, such that

E[eλ
√
Y0 ] < ∞.

As a consequence there exist positive constants c and C, such that for all ε > 0 and n ≥ 1,

P(|Dn − E[Dn]| > εE[Dn]) ≤ C exp(−c (εn)1/3).

Now we will see that D0[0, t] is close to DNt , where Nt is defined for all t > 0, by

Nt = sup{i : τi ≤ t}.

Indeed, recall that

D0[0, t] =

∫ t

0
G∗(βs) ds,

and that G∗(z) = G(z), whenever ‖z‖ > 1. Therefore

D0[0, t] = DNt − Z1(t)− Z2(t) + Z3(t), (3.30)

with

Z1(t) =

∫ t

τ0∧t
1(‖βs‖ ≤ 1)G(βs) ds, Z2(t) =

∫ τNt+1

t
G(βs) ds, and Z3(t) =

∫ t

0
1(‖βs‖ ≤ 1)G∗(βs) ds.

Since, G∗ is bounded on B(0, 1), we see that Z3(t) ≤ Z3(∞) ≤ C `(A0), for some constant C > 0,
with the notation introduced at the beginning of Section 3.3. Moreover, by definition Z2(t) ≤ YNt .
These bounds together with (3.23) and the next lemma show that Z1(t), Z2(t) and Z3(t) are
negligible in (3.30).
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Lemma 3.9. There exists λ > 0, such that

E[eλ
√
Z1(∞)] < +∞,

and for any ε > 0, there exist c > 0 and C > 0, such that

P(YNt ≥ ε log t) ≤ C exp(−c
√

log t).

Moreover, E[YNt ] = o(log t).

Let us postpone the proof of this lemma and continue the proof of Lemma 3.6.

Actually the proof is almost finished. First, all the previous estimates and (3.30) show that D0[0, t]
and DNt have asymptotically the same mean, i.e.

lim
t→∞

1

d(t)
E[DNt ] = 1.

Moreover, using the strong Markov property at times τi, one obtains

E[DNt ] =

∞∑
i=0

E[Yi1(i ≤ Nt)] =

∞∑
i=0

E[Yi1(τi ≤ t)]

=

∞∑
i=0

E[Yi]P(τi ≤ t) = E[Y0]E[Nt].

Then all that remains to do is to recall that Nt is concentrated. Indeed, letting nt = log t/(2 log 2),
it follows from (2.3) that for any ε > 0,

P(Nt ≥ (1 + ε)nt) = P
(

sup
s≤t
‖βs‖ > t(1+ε)/2

)
≤ C exp(−ctε), (3.31)

and it follows from (2.4) that

P(Nt ≤ (1− ε)nt) = P
(

sup
s≤t
‖βs‖ ≤ t(1−ε)/2

)
≤ C exp(−ctε), (3.32)

for some positive constants c and C. So for all ε < 1 we obtain E[Nt] ≥ (1−ε)nt for all t sufficiently
large. Therefore,

d(t) ∼ E[DNt ] ≥ c0 (1− ε)nt,

with c0 = E[Y0]. Note also that E[Dn] = c0n, for all n ≥ 0. So now, gathering all previous estimates
obtained so far, we deduce

P(D0[0, t] ≥ (1 + ε)d(t)) ≤ P
(
D(1+ ε

4)nt ≥
(

1 +
ε

2

)
d(t)

)
+ P

(
Nt ≥

(
1 +

ε

4

)
nt

)
+ P

(
Z3(t) ≥

ε

2
d(t)

)
≤ C exp(−c(log t)1/3),

and likewise for the lower bound:

P(D0[0, t] ≤ (1− ε)d(t)) ≤ P
(
D(1− ε4)nt ≤

(
1− ε

2

)
d(t)

)
+ P

(
Nt ≤ (1− ε

4
)nt

)
+ P

(
Z1(t) + Z2(t) ≥

ε

2
d(t)

)
≤ C exp(−c(log t)1/3),

and this concludes the proof of Lemma 3.6. �

Now to be complete it just remains to prove Lemma 3.8 and 3.9.
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Proof of Lemma 3.8. We first extend the definition of the τi and Ai to negative indices:

τ−i := inf{s ≥ τ0 : βs ∈ ∂B(0, 2−i)},

and
A−i = B(0, 2−i+1) \ B(0, 2−i),

for i ≥ 1. Then with the notation of Section 3.3 we get

Y0 =

∫ τ1

τ0

G(βs) ds ≤ C

∑
i≥1

1(τ−i+1 < τ1)2
2i`(A−i) + τ1

 .

Note that τ1 has an exponential tail by (2.4), so it suffices to bound the moments of the first sum.
More precisely it amounts to proving that its k-th power is bounded by Ck (k!)2. First,

E


∑
i≥1

1(τ−i+1 < τ1)2
2i`(A−i)

k
 =

∑
i1,...,ik

4
∑k
j=1 ij E

 k∏
j=1

1(τ−ij+1 < τ1)`(A−ij )

 .
Next, by Holder’s inequality we get

E

 k∏
j=1

1(τ−ij+1 < τ1)`(A−ij )

 ≤ k∏
j=1

E
[
1(τ−ij+1 < τ1)`(A−ij )

k
]1/k

.

Now by scaling and rotational invariance of the Brownian motion, for any x ∈ ∂B(0, 2−i+1),

Ex[`(A−i)
k] = 4−k(i−1) E[`(A−1)

k].

Therefore using this and the strong Markov property, we get

E
[
1(τ−ij+1 < τ1)`(A−ij )

k
]

= P(τ−ij+1 < τ1) 4−k (ij−1) E[`(A−1)
k].

From (3.23) we deduce that there is a constant C > 0, such that

E


∑
i≥1

1(τ−i+1 < τ1)2
2i`(A−i)

k
 ≤ Ck k!

∑
i1,...,ik

k∏
j=1

P(τ−ij+1 < τ1)
1/k

= Ck k!

∑
i≥1

P(τ−i+1 < τ1)
1/k

k

≤ Ck k!

∑
i≥1

1

22i/k

k

≤ Ck (k!)2,

using (2.2) at the third line. This concludes the proof of the first part of the lemma.
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Now we prove the second part. Let ε > 0 be fixed. Since Y0 is integrable, there exists L ≥ 1, such
that E[Y01(Y0 > L)] ≤ ε/4. Then using Bernstein’s inequality and the first part of the lemma at
the third line, we obtain for some positive constants C and c,

P

(∣∣∣∣∣
n∑
i=0

(Yi − E[Yi])

∣∣∣∣∣ > ε(n+ 1)

)
≤ P(∃i ≤ n : Yi > L) + P

(∣∣∣∣∣
n∑
i=0

(Yi1(Yi < L)− E[Yi])

∣∣∣∣∣ > ε(n+ 1)

)

≤ (n+ 1)P(Y0 > L) + P

(∣∣∣∣∣
n∑
i=0

(Yi1(Yi < L)− E[Yi1(Yi < L)])

∣∣∣∣∣ > ε

2
(n+ 1)

)

≤ C

(
n exp(−λ

√
L) + exp

(
−c ε2n

E
[
Y 2
0

]
+ Lε

))
.

The desired result follows by taking L = (εn)2/3, and εn large enough.

Proof of Lemma 3.9. We start with the first part. Exactly as in the proof of Lemma 3.8, and
using the same notation, one has

Z1(∞) =

∫ ∞
τ0

1(‖βs‖ ≤ 1)G(βs) ds ≤ C
∑
i≥1

1(τ−i+1 <∞)22i`(A−i),

and the result follows exactly as in the previous lemma.

Now for the second part, recall the notation introduced at the end of the proof of Lemma 3.6. Then
using (3.31), (3.32) and Lemma 3.8, we get

P(YNt ≥ ε log t) ≤ P(|Nt − nt| ≥ ε log t) + P (∃i ∈ [nt − ε log t, nt + ε log t] : Yi ≥ ε log t)

≤ C exp(−c tε) + 2ε log t · P(Y0 ≥ ε log t)

≤ C exp(−c tε) + Cε(log t) exp(−c
√
ε log t).

Finally we compute the expectation of YNt as follows: for any fixed ε > 0,

E[YNt ] =
∑
i≥0

E[1(τi ≤ t < τi+1)Yi]

≤
∑

i≤nt−ε log t
E[1(t < τi+1)Yi] +

∑
i≥nt+ε log t

E[1(τi ≤ t)Yi] + 2ε(log t)E[Y0].

Then using Cauchy-Schwartz, (3.31) and (3.32), we get

E[YNt ] ≤ C nt exp(−ctε)E
[
Y 2
0

]1/2
+ E[Y0]

∑
j≥ε log t

exp(−c2j) + 2ε(log t)E[Y0],

and the result follows.

4 Upward Large Deviation

Using our estimate on the expected capacity, we obtain a rough estimate on the upward large
deviation, which we use in the next section when bounding the square of the cross-terms. Our
estimate improves a recent inequality of Erhard and Poisat: inequality (5.55) in the proof of their
Lemma 3.7 in [7]. They estimated the probability that the capacity of the sausage exceeds by far
its mean value and obtained polynomial bounds.
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Proposition 4.1. There exists a constant c > 0, such that for any a > 0, there is κ > 0 satisfying

P
(

Cap (W1[0, t])− E[Cap (W1[0, t])] > a
t

log t

)
≤ exp

(
−c a tκ min(1,

a

log t
)

)
.

Moreover, the inequality holds true for any a ≥ 1, with κ = 1/1000.

Remark 4.2. The proposition shows in particular that the process
(
log t
t Cap(W1[0, t]), t ≥ 2

)
, is

bounded in Lp, for all p ≥ 1.

Proof of Proposition 4.1. Let a > 0 be fixed. Using that the capacity is subadditive, one has
for any t > 0 and L ≥ 1,

Cap (W1[0, t]) ≤
2L−1∑
k=0

Cap

(
W1

[
k
t

2L
, (k + 1)

t

2L

])
. (4.1)

To simplify notation now, we write

X = Cap (W1[0, t]) , and Xk = Cap

(
W1

[
k
t

2L
, (k + 1)

t

2L

])
, for k ≥ 0.

Note that the (Xk) are independent and identically distributed. Now choose L such that 2L = [tκ],
with κ < 1, some positive constant to be fixed later. Then for t large enough, Proposition 3.1 gives

E[X] ≥ 4π2(1− 2−10a)
t

log t
, and E[X1] ≤ 4π2(1 + 2−10a)

t/2L

log(t/2L)
.

Plugging this into (4.1) we obtain

X − E[X] ≤
2L−1∑
k=0

(Xk − E[Xk]) + 4π2
t

log t

( (1 + 2−10a)

1− log(2L)/ log t
− (1− 2−10a)

)
.

Now when a ≤ 1, by choosing κ small enough (depending on a), one can make the last term above
smaller than at/(2 log t), and when a ≥ 1, it is easy to check that this is also true with κ = 1/1000.
Thus for this choice of κ,

P
(
X − E[X] ≥ a t

log t

)
≤ P

2L−1∑
k=0

(Xk − E[Xk]) ≥
a

2

t

log t

 . (4.2)

Now we claim that X1/(t/2
L) has a finite exponential moment. Indeed, thanks to Lemma 2.2, it

suffices to compute the moments of the volume of a Wiener sausage. But this is easily obtained,
using a similar argument as for the local time of balls, see (3.23). To be more precise, for z ∈ R4,
set

σz := inf{s ≥ 0 : ‖βs − z‖ ≤ 1}.

Then for any t ≥ 1 and k ≥ 1, one has using the Markov property

E[|W1[0, t]|k] =

∫
· · ·
∫

P(σz1 ≤ t, . . . , σzk ≤ t) dz1 . . . dzk

= k!

∫
· · ·
∫

P(σz1 ≤ · · · ≤ σzk ≤ t) dz1 . . . dzk
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≤ k!E[|W1[0, t]|]k.

Now recall a classical result of Kesten, Spitzer, and Whitman on the volume of the Wiener sausage,
(see e.g. [14] or [15] and references therein).

lim
t→∞

1

t
· E[|W1(0, t)|] = Cap(B(0, 1)) = 2π2.

As a consequence, for some constant C, we have E[|W1[0, t]|k] ≤ Ckk!tk, and there exists λ0 > 0,
such that

sup
t≥1

E
[
exp

(
λ0

Cap(W1[0, t])

t

)]
< +∞. (4.3)

Now from (4.2) and (4.3) it is quite standard to deduce the result of the proposition. But let us
give some details for the reader’s convenience. First, using a Taylor expansion, one has for any
x ∈ R, and any integer n ≥ 0, ∣∣∣∣∣ex −

n∑
i=0

xi

i!

∣∣∣∣∣ ≤ e|x|
|x|n+1

(n+ 1)!
.

Applying this with n = 2, shows that for any λ ≥ 0, and any nonnegative random variable Y with
finite mean, ∣∣∣∣∣eλ(Y−E[Y ]) −

2∑
i=0

λi(Y − E[Y ])i

i!

∣∣∣∣∣ ≤ λ3

3!
|Y − E[Y ] |3 eλ|Y−E[Y ]|.

Therefore, if we assume in addition that E[eY ] is finite and that λ ≤ 1/2, we obtain

E[eλ(Y−E[Y ])] ≤ 1 +
λ2

2
E[(Y − E[Y ])2] + C1λ

3 ≤ eC2λ2 ,

for some constants C1 and C2 (that only depend on E[eY ]). Now we apply the previous bound to
Y = λ0X0/(t/2

L), with λ0 as in (4.3). Then using Chebychev’s exponential inequality, we get for
any λ ∈ [0, 1/2],

P

2L−1∑
k=0

(Xk − E[Xk])

t/2L
≥ a

2

2L

log t

 ≤ exp
(
− λλ0a

2 log t
2L
) 2L−1∏
k=0

E
[
exp

(
λλ0

Xk − E[Xk]

t/2L

)]

≤ exp

(
−
(
λλ0a

2 log t
− C2λ

2

)
2L
)
,

and the result follows by optimizing in λ.

5 Intersection of Sausages and Cross-terms

5.1 Intersection of Wiener sausages

Our aim in this Section is to obtain some bounds on the probability of intersection of two Wiener
sausages. Then, in the next section, we apply these results to bound the second moment of the
cross-term in the decomposition (1.11) of the capacity of two Wiener sausages.
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We consider two independent Brownian motions (βt, t ≥ 0) and (β̃t, t ≥ 0) starting respectively

from 0 and z, and denote their corresponding Wiener sausages by W and W̃ . We estimate the
probability that W1/2[0, t] intersects W̃1/2[0,∞), when ‖z‖ is of order

√
t up to logarithmic factors.

Such estimates have a long history in probability. Let us mention three occurrences of closely
related estimates, which are however not enough to deduce ours. Aizenman in [1] obtained a bound
for the Laplace transform integrated over space. Pemantle, Peres and Shapiro [17] obtained that
for any z ∈ R4 and t large enough, almost surely

ct

log t
inf

y∈β[0,t]
‖z − y‖−2 ≤ P0,z

(
W1/2[0, t] ∩ W̃1/2[0,∞) 6= ∅

∣∣∣ β) ≤ Ct

log t
sup

y∈β[0,t]
‖z − y‖−2.

Lawler has obtained also similar results in the discrete setting for random walks. Finally, our result
reads as follows.

Proposition 5.1. For any α > 0, there exist positive constants C and t0, such that for all t > t0
and z ∈ R4, with t/(log t)α ≤ ‖z‖2 ≤ t · (log t)α,

P0,z

(
W1/2[0, t] ∩ W̃1/2[0,∞) 6= ∅

)
≤ C ·

(
1 ∧ t

‖z‖2

)
· (log log t)2

log t
. (5.1)

We divide the proof of Proposition 5.1 into two lemmas. The first one deals with ‖z‖ large.

Lemma 5.2. For any α > 0, there exist positive constants C and t0, such that for all t > t0 and
all z ∈ R4 nonzero, with ‖z‖ ≤

√
t · (log t)α,

P0,z

(
W1/2[0, t] ∩ W̃1/2[0,∞) 6= ∅

)
≤ C · t

‖z‖2
· log log t

log t
. (5.2)

The second lemma improves on Lemma 5.2 in the region ‖z‖ small.

Lemma 5.3. For any α > 0, there exist positive constants C and t0, such that for all t > t0 and
all z ∈ R4, with t · (log t)−α ≤ ‖z‖2 ≤ t,

P0,z

(
W1/2[0, t] ∩ W̃1/2[0,∞) 6= ∅

)
≤ C · (log log t)2

log t
. (5.3)

Proof of Lemma 5.2. Let r :=
√
t/ log t. Assume that ‖z‖ > r, otherwise there is nothing to

prove. Using (2.2), we see that estimating (5.2) amounts to bounding the term

P0,z

(
W1/2[0, t] ∩ W̃1/2[0,∞) 6= ∅, W1[0, t] ∩ B(z, r) = ∅

)
.

Using now Proposition 4.1, we see that it suffices to bound the term

P0,z

(
W1/2[0, t] ∩ W̃1/2[0,∞) 6= ∅, d(z,W1[0, t]) ≥ r, Cap(W1[0, t]) ≤ 8π2

t

log t

)
.

By first conditioning on W1[0, t], and then applying Lemma 2.1, we deduce that the latter display
is bounded, up to a constant factor, by

E
[
1(d(z,W1[0, t]) ≥ r)

d(z,W1[0, t])2

]
· t

log t
.
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Furthermore, on the event {d(z,W1[0, t]) ≥ r}, for t sufficiently large we have

1

2
d(z, β[0, t]) ≤ d(z, β[0, t])− 1 ≤ d(z,W1[0, t]) ≤ d(z, β[0, t]),

with β[0, t] the trace of β on the time interval [0, t]. Now by using again (2.2) and the bound
‖z‖ ≤

√
t(log t)α, we get for some constant C independent of z,

E
[
1(d(z, β[0, t]) ≥ r)

d(z, β[0, t])2

]
= 2

∫ 1/r

1/‖z‖
u · P (d(z, β[0, t]) ≤ 1/u) du

≤ C
log(‖z‖/r)
‖z‖2

≤ C(α+
1

2
)
log log t

‖z‖2
,

which concludes the proof.

Proof of Lemma 5.3. Set t1 = 0, t2 = ‖z‖2 and for k ≥ 3, denote tk = 2tk−1. Let K be the
smallest integer such that 2K−1 ≥ (log t)α. In particular t ≤ 2K−1‖z‖2 = tK+1 by hypothesis.
Then,

P0,z

(
W1/2[0, t] ∩ W̃1/2[0,∞) 6= ∅

)
≤

K∑
k=1

P0,z

(
W1/2[tk, tk+1] ∩ W̃1/2[0,∞) 6= ∅

)
.

We now bound each term of the sum on the right hand side. The first one (corresponding to k = 1)
is bounded using directly Lemma 5.2: for some positive constant C,

P0,z

(
W1/2[0, ‖z‖2] ∩ W̃1/2[0,∞) 6= ∅

)
≤ C · log log t

log t
.

Now for the other terms, we first observe that for some positive constants κ, C, and C ′,

E
[

1

‖βtk − z‖2

]
≤ C 1

t2k
·
∫

1

‖z − x‖2
e−κ·‖x‖

2/tk dx ≤ C ′

tk
. (5.4)

Then, we obtain, for some positive constant C,

P0,z

(
W1/2[tk, tk+1] ∩ W̃1/2[0,∞) 6= ∅

)
≤ E

[
P0,z−βtk

(
W1/2[0, tk+1 − tk] ∩ W̃1/2[0,∞) 6= ∅

)]
≤ C E

[
1

‖βtk − z‖2

]
· tk · log log t

log t
≤ C · log log t

log t
,

using again Lemma 5.2 and (2.3) at the second line and (5.4) for the third inequality. We conclude
the proof recalling that K is of order log log t.

We now give the proof of Proposition 1.6.

Proof of Proposition 1.6. Define the stopping times

σ := inf{s : W1[0, s] ∩ γ[0,∞) 6= ∅}, and σ̃ := inf{s : W1[0, s] ∩ γ̃[0,∞) 6= ∅}.

Note that

P0,z,z′ (W1[0, t] ∩ γ[0,∞) 6= ∅, W1[0, t] ∩ γ̃[0,∞) 6= ∅) = P0,z,z′(σ < σ̃ ≤ t) + P0,z,z′(σ̃ < σ ≤ t).
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By symmetry, we only need to deal with P0,z,z′(σ < σ̃ ≤ t). Now conditionally on γ, σ is a stopping
time for β. In particular, conditionally on σ and βσ, W1[σ, t] is equal in law to βσ + W ′1[0, t − σ],
with W ′ a Wiener sausage, independent of everything else. Therefore

P0,z,z′(σ < σ̃ ≤ t) ≤ E0,z

[
1(σ ≤ t)P0,z,z′(σ < σ̃ ≤ t | σ, γ, βσ)

]
≤ E0,z

[
1(σ ≤ t)P0,z′−βσ(W ′1[0, t− σ] ∩ γ̃[0,∞) 6= ∅ | σ)

]
≤ E0,z

[
1(σ ≤ t)P0,z′−βσ(W ′1[0, t] ∩ γ̃[0,∞) 6= ∅)

]
.

To simplify notation, write D = ‖z′ − βσ‖. Note that one can assume D >
√
t · (log t)−3α−1, since

by using (2.2) and the hypothesis on ‖z′‖ we have

P
(
σ ≤ t,D ≤

√
t · (log t)−3α−1

)
≤ t

‖z′‖2 · (log t)6α+2
≤ (log t)−4α−2,

and the right hand side in (1.13) is always larger than (log t)−4α−2 by the hypothesis on z and z′.
Then by applying Proposition 5.1 we get for positive constants C1 and C2,

E0,z

[
1

(
σ ≤ t, D >

√
t

(log t)3α+1

)
P0,z′−βσ

(
W ′1[0, t] ∩ γ̃[0,∞) 6= ∅

)]
≤ C1 E0,z

[
1(σ ≤ t)

(
1 ∧ t

D2

)]
· (log log t)2

log t

≤ C1 P0,z (W1[0, t] ∩ γ̃[0,∞) 6= ∅ ) ·
(

1 ∧ 16t

‖z′‖2

)
· (log log t)2

log t
+ C1P0,z

(
σ ≤ t, D ≤ ‖z

′‖
4

)
· (log log t)2

log t

≤ C2
(log log t)4

(log t)2
·
(

1 ∧ t

‖z‖2

)
·
(

1 ∧ t

‖z′‖2

)
+ C1P0,z

(
σ ≤ t, D ≤ ‖z

′‖
4

)
· (log log t)2

log t
.

Now define

τz,z′ :=

{
inf{s : βs ∈ B(z′, ‖z′‖/4)} if ‖z − z′‖ > ‖z′‖/2
inf{s : βs ∈ B(z′, 3‖z′‖/4)} if ‖z − z′‖ ≤ ‖z′‖/2.

Note that by construction ‖z−βτz,z′‖ ≥ max(‖z−z′‖, ‖z′‖)/4, and that on the event {D ≤ ‖z′‖/4},
one has σ ≥ τz,z′ . Therefore by conditioning first on τz,z′ and the position of β at this time, and
then by using Proposition 5.1, we obtain for some positive constants κ, C3 and C4,

P0,z

(
σ ≤ t, D ≤ ‖z′‖/4

)
≤ P0,z

(
τz,z′ ≤ σ ≤ t

)
≤ C3

(
1 ∧ t

‖z − z′‖2

)
· (log log t)2

log t
· P(τz,z′ ≤ t)

≤ C3

(
1 ∧ t

‖z − z′‖2

)
· (log log t)2

log t
· e−κ·‖z′‖2/t

≤ C4

(
1 ∧ t

‖z‖2

)(
1 ∧ t

‖z′‖2

)
· (log log t)2

log t
,

where we used (2.3) in the third line and considering two cases to obtain the last inequality:
‖z′‖ ≥ ‖z‖/2, in which case we bound the exponential term by the product and ‖z′‖ < ‖z‖/2, in
which case using the triangle inequality gives ‖z − z′‖ ≥ ‖z‖/2. This concludes the proof.

5.2 A second moment estimate

Here we apply the results of the previous subsection to bound the second moment of the cross-term
χ from the decomposition (1.10). Recall that for any compact sets A and B with A ∪B ⊂ B(0, r),
we have defined

χr(A,B) = 2π2 r2 · 1

|∂B(0, r)|

∫
∂B(0,r)

(Pz[HA < HB <∞] + Pz[HB < HA <∞]) dz,
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Proposition 5.4. Let β and β̃ be two independent Brownian motions and let W and W̃ be their
corresponding Wiener sausages. Then, there is a constant C such that for any t > 0, with r(t) =√
t · log t,

E
[
χ2
r(t)(W1[0, t], W̃1[0, t])1

(
W1[0, t] ∪ W̃1[0, t] ⊂ B(0, r(t))

)]
≤ C

t2(log log t)8

(log t)4
. (5.5)

Proof. For any compact sets A and B and any r such that A ∪B ⊂ B(0, r), we bound χr(A,B)2

as follows. For some constant C > 0,

χr(A,B)2 ≤ C
r4

|∂B(0, r)|2

∫
∂B(0,r)×∂B(0,r)

(
Pz,z′(HA < HB <∞, H̃A < H̃B <∞)

+ Pz,z′(HB < HA <∞, H̃B < H̃A <∞) + Pz,z′(HA < HB <∞, H̃B < H̃A <∞)

+ Pz,z′(HB < HA <∞, H̃A < H̃B <∞)
)
dz dz′, (5.6)

where H and H̃ refer to the hitting times of two independent Brownian motions γ and γ̃ starting
respectively from z and z′ in ∂B(0, r). To simplify notation, let A = W1[0, t], B = W̃1[0, t], and
r = r(t). By using (2.2), we obtain

Pz,z′(HA < HB <∞, H̃A < H̃B <∞)

= Pz,z′
(
HA < HB <∞, H̃A < H̃B <∞, HB(0,

√
t

(log t)3
)

=∞, H̃B(0,
√
t

(log t)3
)

=∞
)

+O
(

1

(log t)8

)
.

Now, to bound the probability on the right-hand side, we use the Markov property at times HA

and H̃A for γ and γ̃ respectively. We then have using Lemma 1.6 twice, for some constant C

Pz,z′(HA < HB <∞, H̃A < H̃B <∞) ≤ C Pz,z′
(
HA <∞, H̃A <∞

)
· (log log t)4

(log t)2
+O

(
(log t)−8

)
≤ C

(
1 ∧ t

‖z′‖2

)
·
(

1 ∧ t

‖z‖2

)
(log log t)8

(log t)4
+O

(
(log t)−8

)
= O

(
(log log t)8

(log t)8

)
. (5.7)

By symmetry, we get as well

Pz,z′(HB < HA <∞, H̃B < H̃A <∞) = O
(

(log log t)8

(log t)8

)
. (5.8)

Now to bound the last two terms in (5.6), we can first condition on A = W1[0, t] and B = W̃1[0, t],
and then using the inequality ab ≤ a2 + b2 for a, b > 0, together with (5.7) and (5.8), this gives

Pz,z′(HA < HB <∞, H̃B < H̃A <∞) ≤ Pz,z(HA < HB <∞, H̃A < H̃B <∞)

+ Pz′,z′(HB < HA <∞, H̃B < H̃A <∞) = O
(

(log log t)8

(log t)8

)
.

(5.9)

By symmetry it also gives

Pz,z′
(
H
W̃1[0,t]

< HW1[0,t] <∞, H̃W1[0,t] < H̃
W̃1[0,t]

<∞
)

= O
(

(log log t)8

(log t)8

)
. (5.10)

Then the proof follows from (5.6), (5.7), (5.8), (5.9), and (5.10).
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6 Proof of Theorem 1.1

The proof of the strong law of large number has four elementary steps: (i) the representation formula
(2.5) of the capacity of the sausage in terms of a probability of intersection of two sausages, (ii)
a decomposition formula as we divide the time period into two equal periods, and iterate the
latter steps enough times (iii) an estimate of the variance of dominant terms of the decomposition,
(iv) Borel-Cantelli’s Lemma allows us to conclude along a subsequence, and the monotony of the
capacity which yields the asymptotics along all sequence.

Since all the technicalities have been dealt before, we present a streamlined proof. We only give
the proof when the radius of the sausage is equal to one, as the same proof applies for any radius.

The decomposition. We let r = r(t) =
√
t · log t. When dealing with the random set W1[0, t],

(1.10) holds only on the event {W1[0, t] ⊂ B(0, r)}, and yields

Cap (W1[0, t]) = Cap

(
W1

[
0,
t

2

])
+ Cap

(
W1

[
t

2
, t

])
− χr

(
W1

[
0,
t

2

]
,W1

[
t

2
, t

])
− εr

(
W1

[
0,
t

2

]
,W1

[
t

2
, t

])
.

What is crucial here is that Cap(W1[0,
t
2 ]) and Cap(W1[

t
2 , t]) are independent. We iterate the

previous decomposition L times and center it, to obtain (with the notation X = X −E[X]), on the
event {W1[0, t] ⊂ B(0, r)},

Cap(W1[0, t]) = S(t, L)− Ξ(t, L, r)−Υ(t, L, r), (6.1)

where S(t, L) is a sum of 2L i.i.d. terms distributed as Cap(W1[0, t/2
L]), where

Ξ(t, L, r) =

L∑
`=1

2`−1∑
i=1

χr

(
W1

[
2i− 2

2`
t,

2i− 1

2`
t

]
,W1

[
2i− 1

2`
t,

2i

2`
t

])
, (6.2)

and

Υ(t, L, r) =
L∑
`=1

2`−1∑
i=1

εr

(
W1

[
2i− 2

2`
t,

2i− 1

2`
t

]
,W1

[
2i− 1

2`
t,

2i

2`
t

])
. (6.3)

In both (6.2) and (6.3), the second sum (with ` fixed) is made of independent terms.

Variance Estimates. We choose L such that (log t)4 ≤ 2L ≤ 2(log t)4, so that L is of order
log log t. Let now ε > 0 be gixed. By (2.3) and Chebychev’s inequality, for t large enough,

P
(
|Cap(W1[0, t])| > ε

t

log t

)
≤ P (W1[0, t] 6⊂ B(0, r)) + P

(
|Υ(t, L, r)| > ε

2

t

log t

)
+P

(
|S(t, L)− Ξ(t, L, r)| > ε

2

t

log t

)
≤ e−c(log t)

2
+ P

(
|Υ(t, L, r)| > ε

2

t

log t

)
+ 8(log t)2

var(S(t, L)) + var(Ξ(t, L, r))

ε2t2
. (6.4)
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Then we use the triangle inequality for the L2-norm and the Cauchy-Schwarz inequality, as well as
Proposition 5.4, to obtain

var(Ξ(t, L, r)) ≤ CL ·
L∑
`=1

2`−1
t2 · (log log t)8

22`(log t)4
≤ Ct2 · (log log t)9

(log t)4
. (6.5)

To deal with var(S(t, L)), we can use Proposition 4.1 which gives a constant C > 0, such that for
any t ≥ 2

E[Cap(W1[0, t])
2] ≤ C

t2

(log t)2
,

Thus there exists a constant C ′ > 0, such that for t large enough,

var(SL(t)) ≤ C ′ 2L
(t/2L)2

log2(t/2L)
≤ 2C ′

t2

(log t)6
. (6.6)

The term Υ is controlled by invoking Lemma 2.2, and using that εr(A,B) ≤ Cap(A ∩ B). We
deduce

var(Υ(t, L, r)) = O(22L(log t)2) = O((log t)10), (6.7)

so that

P
(
|Υ(t, L, r)| > ε

2

t

log t

)
= O

(
(log t)12

t2

)
. (6.8)

Plugging (6.5) (6.6) and (6.8) into (6.4), we obtain

P
(
|Cap(W1[0, t])− E[Cap(W1[0, t])]| ≥ ε

t

log t

)
= O

(
(log log t)9

(log t)2

)
.

From Subsequences to SLLN. Consider the sequence an = exp(n3/4), satisfying that an+1−an
goes to infinity but an+1 − an = o(an). Since the previous bound holds for all ε > 0, by using
Borel-Cantelli’s lemma and Proposition 3.1, we deduce that a.s.

lim
n→∞

Cap(W1[0, an])

E[Cap(W1[0, an])]
= 1. (6.9)

Let now t > 0, and choose n = n(t) > 0, so that an ≤ t < an+1. Using that the map t 7→
Cap(W1[0, t]) is a.s. nondecreasing (since for any sets A ⊂ B, one has Cap(A) ≤ Cap(B)), we can
write

Cap(W1[0, an])

E[Cap(W1[0, an+1])]
≤ Cap(W1[0, t])

E[Cap(W1[0, t])]
≤ Cap(W1[0, an+1])

E[Cap(W1[0, an])]
. (6.10)

Moreover, applying Proposition 3.1 again gives

E[Cap(W1[an, an+1])] = E[Cap(W1[0, an+1 − an])] = O
(

an+1 − an
log(an+1 − an)

)
= o

(
an

log an

)
.

Then using that for any sets A and B, one has Cap(A) ≤ Cap(A ∪ B) ≤ Cap(A) + Cap(B), we
deduce that

lim
n→∞

E[Cap(W1[0, an+1])]

E[Cap(W1[0, an])]
= 1,

which, together with (6.9) and (6.10), proves the almost sure convergence.

The convergence in Lp follows from the boundedness result proved in Section 4, see Remark 4.2. �

Finally we note that the bound on the variance (1.9) follows from (6.1), (6.5), (6.6) and (6.7).
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