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Abstract

Let (ξ(s))s≥0 be a standard Brownian motion in d ≥ 1 dimensions and let (Ds)s≥0

be a collection of open sets in Rd. For each s, let Bs be a ball centered at 0 with
vol(Bs) = vol(Ds). We show that E[vol(∪s≤t(ξ(s) + Ds))] ≥ E[vol(∪s≤t(ξ(s) + Bs))],
for all t. In particular, this implies that the expected volume of the Wiener sausage
increases when a drift is added to the Brownian motion.

Keywords and phrases. Poisson point process, random walk, Brownian motion, cou-
pling, rearrangement inequality.
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60G50.

1 Introduction

Let (ξ(t))t≥0 be a standard Brownian motion in Rd. For any open set A ⊂ Rd, the corre-
sponding Wiener sausage at time t is ∪s≤t(ξ(s) +A).

Kesten, Spitzer and Whitman(1964) (see [4, p. 252]) proved that for d ≥ 3, if A ⊂ Rd is an
open set with finite volume, then the Wiener sausage satisfies

E[vol(∪s≤t(ξ(s) +A))]

t
→ Cap(A) as t→ ∞,

where Cap(A) is the Newtonian capacity of the set A.

Pólya and Szëgo (see [10]) proved that for d ≥ 3, among all open sets of fixed volume, the
ball has the smallest Newtonian capacity. Thus, for any open set A ⊂ Rd of finite volume,

E[vol(∪s≤t(ξ(s) +A))] ≥ (1− o(1))E[vol(∪s≤t(ξ(s) +B))], as t→ ∞, (1.1)

where B is a ball with vol(B) = vol(A).

This naturally raises the question whether (1.1) holds for fixed t without the 1−o(1) factor.
Our main result gives a positive answer in the more general setting where the set A is
allowed to vary with time.
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Theorem 1.1. Let (ξ(s))s≥0 be a standard Brownian motion in d ≥ 1 dimensions and let
(Ds)s≥0 be open sets in Rd. For each s, let rs > 0 be such that vol(B(0, rs)) = vol(Ds).
Then for all t we have that

E [vol (∪s≤t (ξ(s) +Ds))] ≥ E [vol (∪s≤tB(ξ(s), rs))] .

Our original motivation for Theorem 1.1 came from our joint work with A. Sinclair and
A. Stauffer [8]. In [8] it was proved that in dimension 2 for any continuous function f :
R+ → R2,

E[vol(∪s≤tB(ξ(s) + f(s), r))] ≥ (1− o(1))E[vol(∪s≤tB(ξ(s), r))], as t→ ∞

and it was conjectured that for all d ≥ 1 and for any continuous function f : R+ → Rd,

E[vol(∪s≤tB(ξ(s) + f(s), r))] ≥ E[vol(∪s≤tB(ξ(s), r))], (1.2)

where B(x, r) stands for the open ball centered at x of radius r.

In dimension 1 this conjecture was shown in [8] to follow from the reflection principle. The-
orem (1.1) above establishes (1.2) without requiring f to be continuous or even measurable,
by taking Ds = B(f(s), r).

Remark 1.2. For any collection of open sets (Ds) the set ∪s≤t(ξ(s) + Ds) is open, and
hence Lebesgue measurable. Its volume, namely vol(∪s≤t(ξ(s)+Ds)), is a random variable.
This is explained at the end of the proof of Theorem 1.1 in Remark 3.2.

Remark 1.3. The Wiener sausage determined by a ball, i.e. W (t) = ∪s≤tB(ξ(s), r), has
been studied extensively. Spitzer [11] obtained exact asymptotics as t→ ∞ for the expected
volume of the Wiener sausage in 2 and 3 dimensions and Donsker and Varadhan [2] obtained
exact asymptotics for the exponential moments of the volume. Kesten, Spitzer and Whitman
(see [11] and [12]) proved laws of large numbers type results and Le Gall in [5] proved
fluctuation results corresponding to these laws of large numbers.

Remark 1.4. In [6] (see also [3, Corollary 2.1]) a result analogous to (1.2) for random walks
is proved, namely that the expected range of a lattice walk always increases when a drift is
added to the walk. The proof of that result and our proof of Theorem 1.1 do not seem to
yield each other.

Remark 1.5. A result analogous to (1.2) was proved in [9] for the Hausdorff dimension of
the image and the graph of ξ + f , where f is a continuous function. Namely, in [9] it is
proved that

dim(ξ + f)[0, 1] ≥ max{dim ξ[0, 1], dim f [0, 1]} a.s.

and similarly for the dimension of the graph.

To prove Theorem 1.1, we establish an analogous statement for a certain random walk,
which we refer to as the ε-ball walk.
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(a) Random walk sausage with squares (b) Random walk sausage with discs

Proposition 1.6. Let ε > 0 and let (z∗(k))k≥0 be a random walk in Rd starting from 0 and
with transition kernel given by

p(x, y) =
1(∥x− y∥ < ε)

εdω(d)
, (1.3)

where ω(d) is the volume of the unit ball in Rd. For any integer n and any collection of
open sets (Uk)k≥0 in Rd we have that

E [vol (∪n
k=0 (z∗(k) + Uk))] ≥ E [vol (∪n

k=0B(z∗(k), rk))] , (1.4)

where rk is such that vol(B(0, rk)) = vol(Uk).

Remark 1.7. Proposition 1.6 can be extended to any random walk with transition density
p(x, y) = f(|x− y|) with f decreasing. Using that one can deduce an analog of Theorem 1.1
for Lévy processes with a radially decreasing transition density.

In the next section we first state a rearrangement inequality in Theorem 2.1, taken from [1,
Theorem 2], and apply it to random walks on the sphere. Then we prove Proposition 1.6.
In Section 3, using Proposition 1.6 and Donsker’s invariance principle, we give the proof of
Theorem 1.1.
In Section 4 we collect some easy convergence lemmas.
Finally, in Section 5 we conclude with some open questions and remarks.

2 Rearrangement inequalities and proof of Proposition 1.6

Let S denote a sphere in d dimensions. We fix x∗ ∈ S. For a subset A of S we define A∗

to be a geodesic cap centered at x∗ such that µ(A∗) = µ(A), where µ is the surface area
measure on the sphere. We call A∗ the symmetric rearrangement of A.

The following theorem is a special case of Burchard and Schmuckenschläger [1, Theorem 2].
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Theorem 2.1 ([1]). Let A1, . . . , An be Borel subsets of S and let ψij : S × S → R+ be
nonincreasing functions of distance. Then we have the following inequality∫

S
. . .

∫
S

∏
1≤i≤n

1(xi ∈ Ai)
∏

1≤i<j≤n

ψij(xi, xj) dµ(x1) . . . dµ(xn)

≤
∫
S
. . .

∫
S

∏
1≤i≤n

1(xi ∈ A∗
i )

∏
1≤i<j≤n

ψij(xi, xj) dµ(x1) . . . dµ(xn).

Let SR ⊂ Rd+1 be the sphere of radius R in d+ 1 dimensions centered at 0, i.e.

SR = {(x1, . . . , xd+1) ∈ Rd+1 :

d+1∑
i=1

x2i = R2}. (2.1)

Let ε > 0 and let ζ̃ be a random walk on the sphere that starts from a uniform point on the
surface of the sphere and has transition kernel given by

ψ(x, y) =
1(ρ(x, y) < ε)

µ(C(x, ε))
. (2.2)

Again µ stands for the surface area measure on the sphere, ρ(x, y) stands for the geodesic
distance between x and y and

C(x, ε) = {z ∈ SR : ρ(x, z) < ε}.

We call ζ̃ the ε-cap walk. For a collection (Θk)k≥0 of Borel subsets of SR we define

τΘ = inf{k ≥ 0 : ζ̃(k) ∈ Θk}.

Lemma 2.2. Let (Θk)k≥0 be Borel subsets of the sphere, SR. Then for all n we have that

P(τΘ > n) ≤ P(τC > n), (2.3)

where for each k we define Ck to be a geodesic cap centered at (0, . . . , 0,−R) such that
µ(Ck) = µ(Θk).

Proof. Using the Markov property, we write P(τΘ > n) as

1

µ(S)

∫
SR

· · ·
∫
SR

n∏
i=1

ψ(xi−1, xi)

n∏
i=0

1(xi ∈ Θc
i ) dµ(x0) · · · dµ(xn).

Let x∗ = (0, . . . , 0, R). Since the transition kernel ψ is a nonincreasing function of distance,
applying Theorem 2.1, we obtain that this last integral is bounded from above by∫

SR
. . .

∫
SR

n∏
i=1

ψ(xi−1, xi)

n∏
i=0

1(xi ∈ Ai) dµ(x0) · · · dµ(xn),

where for each i, we have that Ai is a geodesic cap centered at x∗ with µ(Ai) = µ(Θc
i ).

Writing Ci = Ac
i , we have that Ci is a geodesic cap centered at (0, . . . , 0,−R) such that

µ(Ci) = µ(Θi) and hence proving the lemma.
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It is intuitive and standard that as R → ∞ the sphere SR tends to Euclidean space. The
following two lemmas make this precise in the situation we need for the proof of Proposi-
tion 1.6. These lemmas are established in Section 4.

We define the projection mapping π : SR → Rd via

π(x1, . . . , xd+1) = (x1, . . . , xd) (2.4)

and the inverse map π−1(x1, . . . , xd) = (x1, . . . , xd+1) ∈ SR such that xd+1 ≤ 0.

Lemma 2.3. Let r,K > 0. Then for all δ > 0, there exists R0 such that for all x ∈ B(0,K)
we have that

B(x, r − δ) ⊂ π(C(π−1(x), r)) ⊂ B(x, r + δ), for all R > R0. (2.5)

Also for all A ⊂ π−1(B(0,K)) we have that

µ(A)− vol(π(A)) → 0, as R→ ∞.

Lemma 2.4. Let L, n > 0. Let z be an ε-ball walk in Rd started from a uniform point
in B(0, L + nε). Let ζ be an ε-cap walk on SR started from a uniform point in the cap
C(L) = π−1(B(0, L+ nε)). Then there exists a coupling of z and π(ζ) such that

P(π(ζ(k)) = z(k), ∀k = 0, . . . , n) → 1 as R→ ∞.

The rest of this section is devoted to the proof of Proposition 1.6.

Proof of Proposition 1.6. First note that if the sets (Uk) have infinite volume, then the
inequality is trivially true. We will prove the theorem under the assumption that they are
all bounded, since then by truncation we can get the result for any collection of unbounded
open sets.

Let L > 0 be sufficiently large such that

∪n
i=0Ui ⊂ B(0, L).

We now consider the ball B(0, L+nε) in Rd and we take R big enough so that we can ensure
that

C(L) = π−1(B(0, L+ nε)) (2.6)

is a cap (centered at (0, . . . , 0,−R)) of geodesic radius bigger than L+ nε.
From Lemma 2.2 we have that

P(τπ
−1(U) > n) ≤ P(τC > n), (2.7)

where for each k we define Ck to be a geodesic cap centered at (0, . . . , 0,−R) such that
µ(Ck) = µ(π−1(Uk)).
It is clear that

P(τπ
−1(U) ≤ n) = P(ζ̃(0) ∈ C(L))PC(L)(τ

π−1(U) ≤ n),
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where under PC(L) the starting point of the random walk is uniform on C(L). Similarly for
the collection of caps C we have

P(τC ≤ n) = P(ζ̃(0) ∈ C(L))PC(L)(τ
C ≤ n).

Hence, using the above equalities together with (2.7) we obtain that

P(∀k = 0, . . . , n, π(ζ(k)) /∈ Uk) ≤ P(∀k = 0, . . . , n, π(ζ(k)) /∈ π(Ck)), (2.8)

where ζ is an ε-cap walk started from a uniform point in C(L), i.e., it has transition kernel
given by (2.2). Now, we will go back to Rd. Let (z(k))k be an ε-ball walk that starts from
a uniform point in B(0, L + nε), i.e., it has transition kernel given by (1.3). Thus for each
k we can write z(k) = z(0)− z∗(k), where z(0) is uniform on B(0, L+ nε) and (z∗(k)) is an
ε-ball walk that starts from 0. We define

TU = min{k ≥ 0 : z(k) ∈ Uk}. (2.9)

Since z(0) is uniform on B(0, L+ nε), we can write

P(TU > n) = P(z(0) /∈ U0, z(1) /∈ U1, . . . , z(n) /∈ Un)

= P(z(0) /∈ (∪n
k=0(z∗(k) + Uk))) = 1−

E [vol (∪n
k=0(z∗(k) + Uk))]

vol(B(0, L+ nε))
.

It is easy to check that for each k the projection π(Ck) is a ball in Rd centered at 0. Let rRk
be its radius and let rk be such that vol(B(0, rk)) = vol(Uk). Then by Lemma 2.3 we have
that

rRk → rk, as R→ ∞. (2.10)

From Lemma 2.4, there exists a coupling of (π(ζ(k)))k=0,...,n with (z(k))k=0,...,n, so that

P(∀k = 0, . . . , n : π(ζ(k)) = z(k)) → 1 as R→ ∞. (2.11)

By the union bound we have that

P(∀k = 0, . . . , n : z(k) /∈ Uk) ≤ P(∀k = 0, . . . , n : π(ζ(k)) /∈ Uk) + P(coupling fails), (2.12)

where coupling fails means that there exists k ∈ {0, . . . , n} such that π(ζ(k)) ̸= z(k). Thus,
from (2.11) we have

P(coupling fails) = 1− P(∀k = 0, . . . , n : π(ζ(k)) = z(k)) → 0 as R→ ∞. (2.13)

Similarly,

P(∀k = 0, . . . , n : z(k) /∈ π(Ck)) ≥ P(∀k = 0, . . . , n : π(ζ(k)) /∈ π(Ck))− P(coupling fails).
(2.14)

Hence, (2.12) and (2.14) together with (2.8) give that

P(T π(C) > n) ≥ P(∀k, z(k) /∈ Uk)− 2P(coupling fails).

Therefore, using that π(Ck) = B(0, rRk ), we deduce that

1−
E
[
vol
(
∪n
k=0(z∗(k) + B(0, rRk ))

)]
vol(B(0, L+ nε))

≥ 1−
E [vol (∪n

k=0(z∗(k) + Uk))]

vol(B(0, L+ nε))
− 2P(coupling fails).

Using (2.10) and (2.13) and letting R → ∞ in the inequality above concludes the proof of
the proposition.
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3 Proof of Theorem 1.1

For n ∈ N and t > 0 we define

Dn,t =

{
kt

2n
: k = 0, . . . , 2n

}
.

Lemma 3.1. Let (ξ(s))s≥0 be a standard Brownian motion in d ≥ 1 dimensions and let
(Vs)s≥0 be open sets in Rd. For each s, let rs > 0 be such that vol(Vs) = vol(B(0, rs)). Then
for all n ∈ N and t > 0 we have that

E
[
vol
(
∪ℓ∈Dn,t(ξ(ℓ) + Vℓ)

)]
≥ E

[
vol
(
∪ℓ∈Dn,tB(ξ(ℓ), rℓ)

)]
.

Proof. First note that if the sets (Vs) have infinite volume, then the inequality is trivially
true. We will prove the theorem under the assumption that they are all bounded, since then
by truncation we can get the result for any collection of unbounded open sets.

Let X1, X2, . . . be i.i.d. random variables with uniform distribution on B(0, 1). Write Sn =∑n
i=1Xi. Let N ∈ N and let σ2 be the variance of X1. Then for any collection of bounded

open sets (Us) we have from Proposition 1.6 that

E
[
vol

(
∪s∈{0,1/N,...,[t]/N}

(
S[Ns]√
σ2N

+ Us

))]
≥ E

[
vol

(
∪s∈{0,1/N,...,[t]/N}

(
S[Ns]√
σ2N

+ B(0, rs)
))]

,

(3.1)

where rs is such that vol(Us) = vol(B(0, rs)).
We will drop the dependence on t from Dn,t to simplify the notation. Since (3.1) holds true
for any collection of bounded sets, we have that for N large enough

E
[
vol

(
∪ℓ∈Dn

(
S[Nℓ]√
σ2N

+ Vℓ

))]
≥ E

[
vol

(
∪ℓ∈Dn

(
S[Nℓ]√
σ2N

+ B(0, rℓ)
))]

,

since in (3.1) we can take Uℓ = Vℓ, for ℓ ∈ Dn and empty otherwise. As before, rℓ is such
that vol(B(0, rℓ)) = vol(Vℓ).
By Donsker’s invariance principle (see for instance [7, Theorem 5.22]), for a fixed n, we have
that (

S[Nℓ]√
σ2N

)
ℓ∈Dn

(w)−−→ (ξ(ℓ))ℓ∈Dn as N → ∞. (3.2)

If for all ℓ ∈ Dn we have that vol(∂Vℓ) = 0, then by (3.2) and Lemma 4.1 we deduce that

E [vol (∪ℓ∈Dn (ξ(ℓ) + Vℓ))] ≥ E [vol (∪ℓ∈Dn (ξ(ℓ) + B(0, rℓ)))] .

If ∃k such that vol(∂Vk) > 0, then for each ℓ ∈ Dn we write Vℓ = ∪∞
j=1Aj,ℓ, where (Aj,ℓ)j

are all the dyadic cubes that are contained in Vℓ.
Then for every finite K, we have that

E
[
vol
(
∪ℓ∈Dn

(
ξ(ℓ) + ∪K

j=1Aj,ℓ

))]
≥ E [vol (∪ℓ∈Dn (ξ(ℓ) + B(0, r(ℓ,K))))] , (3.3)

where for each ℓ we have that r(ℓ,K) satisfies vol(B(0, r(ℓ,K))) = vol(∪K
j=1Aj,ℓ), and hence

r(ℓ,K) ↗ rℓ as K → ∞. Thus, letting K → ∞, by monotone convergence we conclude that

E [vol (∪ℓ∈Dn (ξ(ℓ) + Vℓ))] ≥ E [vol (∪ℓ∈Dn (ξ(ℓ) + B(0, rℓ)))] .
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Proof of Theorem 1.1. Let M > 0. We will show the theorem under the assumption
that Ds ⊂ B(0,M), for all s ≤ t, since then by monotone convergence we can get it for any
collection of open sets.
For each s, we define the set

Ds,n = {z ∈ Ds : d(z,D
c
s) > (t/2n)1/3}, (3.4)

which is open. For every ℓ ∈ Dn, we define

Zℓ = ∪ℓ≤s<ℓ+t/2nDs,n, (3.5)

which is again open as a union of open sets. For each s we let rs,n be such that vol(B(0, rs,n)) =
vol(Ds,n). From Proposition 1.6 we then get that

E [vol (∪ℓ∈Dn (ξ(ℓ) + Zℓ))] ≥ E
[
vol
(
∪ℓ∈Dn

(
ξ(ℓ) + B(0, r∗ℓ,n)

))]
, (3.6)

where r∗ℓ,n satisfies

r∗ℓ,n =

(
sup

ℓ≤s<ℓ+t/2n
rs,n − (t/2n)1/3

)+

.

We now define the event

Ωn =

{
∀h ≤ t/2n : sup

s,u:|s−u|≤h
∥ξ(s)− ξ(u)∥ ≤ (21/3 − 1)h1/3

}
.

We will now show that on Ωn we have that

∪ℓ∈Dn(ξ(ℓ) + Zℓ) ⊂ ∪s≤t(ξ(s) +Ds).

Let y ∈ ξ(ℓ) + Zℓ, for some ℓ ∈ Dn. Then there exists ℓ ≤ s < ℓ + t/2n such that
d(y − ξ(ℓ), Dc

s) > (t/2n)1/3. Also, since ∥ξ(s) − ξ(ℓ)∥ ≤ (t/2n)1/3 on Ωn, we get by the
triangle inequality that

d(y − ξ(s), Dc
s) ≥ d(y − ξ(ℓ), Dc

s)− ∥ξ(s)− ξ(ℓ)∥ > (t/2n)1/3 − (21/3 − 1)(t/2n)1/3 > 0,

and hence we deduce that y ∈ ξ(s) +Ds.
Therefore, from (3.6) we obtain

E [vol (∪s≤t(ξ(s) +Ds))] + E [vol (∪ℓ∈Dn(ξ(ℓ) + Zℓ))1(Ωc
n)] ≥ E

[
vol
(
∪ℓ∈DnB(ξ(ℓ), r∗ℓ,n)

)
1(Ωn)

]
.

(3.7)

Claim 3.1. As n→ ∞ we have that a.s.

vol
(
∪ℓ∈DnB(ξ(ℓ), r∗ℓ,n)

)
1(Ωn) ↗ vol (∪s≤tB(ξ(s), rs)) .

Proof. Indeed it is clear that Ωn ⊂ Ωn+1 and on Ωn we have that

∪ℓ∈DnB(ξ(ℓ), r∗ℓ,n) ⊂ ∪ℓ∈Dn+1B(ξ(ℓ), r∗ℓ,n+1). (3.8)

To prove that, we need to show that for each ℓ ∈ Dn, the ball B(ξ(ℓ), r∗ℓ,n) is contained in the
right hand side of (3.8). We may assume that r∗ℓ,n > 0. Let y be such that ∥y− ξ(ℓ)∥ < r∗ℓ,n.

We set ℓ′ = ℓ+ t/2n+1 and ℓ′′ = ℓ+ t/2n. Then there are two cases:
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• If supℓ≤s<ℓ′ rs,n ≥ supℓ′≤s<ℓ′′ rs,n, then ∥y − ξ(ℓ)∥ < r∗ℓ,n+1.

• If supℓ≤s<ℓ′ rs,n < supℓ′≤s<ℓ′′ rs,n, then

∥y − ξ(ℓ′)∥ ≤ ∥y − ξ(ℓ)∥+ ∥ξ(ℓ)− ξ(ℓ′)∥ < r∗ℓ,n + (21/3 − 1)(t/2n+1)1/3

= sup
ℓ′≤s<ℓ+t/2n

rs,n − (t/2n)1/3 + (t/2n+1)1/3(21/3 − 1) ≤ r∗ℓ′,n+1.

For each n we define the set An as follows:

An =

{
∪ℓ∈DnB(ξ(ℓ), r∗ℓ,n), on Ωn

∅, otherwise.

We will now show that

∪nAn = ∪s≤tB(ξ(s), rs) a.s. (3.9)

To prove that, we will first show that for each n and ℓ ∈ Dn on Ωn we have that B(ξ(ℓ), r∗ℓ,n) ⊂
∪s≤tB(ξ(s), rs). Again we may assume that r∗ℓ,n > 0. Let y be such that ∥y − ξ(ℓ)∥ < r∗ℓ,n.
For each ε > 0, there exists u such that ℓ ≤ u < ℓ+ t/2n and ru,n > supℓ≤s<ℓ+t/2n rs,n − ε.
We have

∥y − ξ(u)∥ ≤ ∥y − ξ(ℓ)∥+ ∥ξ(ℓ)− ξ(u)∥
< r∗ℓ,n + (21/3 − 1)(t/2n)1/3 < ru,n + ε− (t/2n)1/3 + (21/3 − 1)(t/2n)1/3

and by choosing ε small enough, we can make ∥y − ξ(u)∥ smaller than ru,n.

For the other inclusion we will show that for eachm fixed on Ωm we have that ∪s≤tB(ξ(s), rs) ⊂
∪nAn. This will be enough since by Lévy’s modulus of continuity theorem (see for instance
[7, Theorem 1.14]) we have that P(∪mΩm) = 1. Let y be such that ∥y − ξ(s)∥ < rs. Take
ε > 0 small enough so that ∥y− ξ(s)∥ < rs− ε. The sets Ds,n defined in (3.4) are increasing
in n. Since Ds is open, Ds = ∪nDs,n. Hence by monotone convergence, we get that rs,n ↗ rs
as n → ∞. Thus for n large enough, we get that rs ≤ rs,n + ε. We now take n even larger
(also larger than m) so that ∥y− ξ(s)∥ < rs− ε− 21/3(t/2n)1/3. If we take ℓ ∈ Dn such that
ℓ ≤ s < ℓ+ t/2n, then, using that the events (Ωn) are increasing, we deduce that

∥y − ξ(ℓ)∥ ≤ ∥y − ξ(s)∥+ ∥ξ(s)− ξ(ℓ)∥
≤ rs − ε− 21/3(t/2n)1/3 + (21/3 − 1)(t/2n)1/3 ≤ rs,n − (t/2n)1/3 ≤ r∗ℓ,n.

Therefore we showed that y ∈ B(ξ(ℓ), r∗ℓ,n) and this proves (3.9). Monotone convergence
theorem completes the proof of Claim 3.1.

Finally by the dominated convergence theorem we get that

E [vol (∪ℓ∈Dn(ξ(ℓ) + Zℓ))1(Ωc
n)] → 0,

since P(Ωc
n) → 0 as n→ ∞, by Lévy’s modulus of continuity theorem and also

vol (∪ℓ∈Dn (ξℓ + Zℓ)) ≤ vol(B(0,max
s≤t

|ξ(s)|+M)),

since we assumed that the sets (Ds) are all contained in B(0,M).
Taking the limit as n→ ∞ in (3.7) concludes the proof.
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Remark 3.2. The proofs of Lemma 3.1 and Theorem 1.1 also give that for any collection
of open sets (Ds), the volume of ∪s≤t(ξ(s) + Ds) is a random variable. Indeed, on ∪nΩn

(which has P(∪nΩn) = 1) we have that

vol(∪s≤t(ξ(s) +Ds)) = lim
n→∞

vol (∪n
k=1 ∪ℓ∈Dk

(ξ(ℓ) + Zℓ)) ,

where Zℓ is as defined in (3.5). If for all n and all ℓ ∈ Dn we have that vol(∂Zℓ) = 0, then
from Lemma 4.1 we get the measurability. Otherwise, we write Zℓ as a countable union of
the dyadic subcubes contained in it and then use the monotonicity property together with
Lemma 4.1 again, like in the last part of the proof of Lemma 3.1.

4 Relating the sphere to its tangent plane

In this section we give the proofs of Lemmas 2.3 and 2.4. We also establish a useful lemma
on continuity of volumes.

Proof of Lemma 2.3. Let c be a sufficiently large positive constant so that for R suffi-
ciently large we have for all x ∈ B(0,K) that

π(C(π−1(x), r)),B(x, r + δ) ⊂ B(0,K + c).

Let x = (x1, . . . , xd) ∈ B(0,K) and y = (y1, . . . , yd) ∈ π(C(π−1(x), r)).
Then π−1(y) ∈ C(π−1(x), r) and hence

θ(π−1(x), π−1(y)) ≤ r

R
, (4.1)

where θ = θ(π−1(x), π−1(y)) satisfies

cos θ =
⟨π−1(x), π−1(y)⟩

R2
=

∑d+1
i=1 xiyi
R2

.

We write ∥ · ∥ for the Euclidean distance in Rd. We then have

∥x− y∥2 =
d∑

i=1

(xi − yi)
2 = 2R2 − 2R2 cos θ − (xd+1 − yd+1)

2.

But, since π−1(x), π−1(y) ∈ SR, we get that xd+1 =
√
R2 −

∑d
i=1 x

2
i and yd+1 =

√
R2 −

∑d
i=1 y

2
i

and using the fact that x ∈ B(0,K) and y ∈ B(0,K + c) we obtain that

(xd+1 − yd+1) → 0 as R→ ∞,

uniformly over all x and y in B(0,K) and B(0,K + c) respectively. From (4.1) and the
monotonicity of the cosφ function for φ small, we obtain that

cos θ ≥ cos
r

R
,
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and hence for all R sufficiently large we have that

∥x− y∥ ≤ r + δ.

To prove the other inclusion, it suffices to show that

B(0,K + c) ∩ π(C(π−1(x), r))c ⊂ B(0,K + c) ∩ B(x, r − δ)c, (4.2)

since B(0,K + c)c is disjoint from π(C(π−1(x), r)) and B(x, r − δ). Finally (4.2) can be
proved using similar arguments to the ones employed above.

To prove the last statement of the lemma, we write

µ(A)− vol(π(A)) =

∫
π(A)

(
1

cos(α(x))
− 1

)
dx,

where α(x) is the angle at the origin between π−1(x) and (0, . . . , 0,−R).
Using that α(x) → 0 as R → ∞ uniformly over all x ∈ B(0,K) we get the desired conver-
gence.

Proof of Lemma 2.4. Since ζ(0) is uniformly distributed on C(L), we have that π(ζ(0))
has density function given by

f0R(x) =
1(x ∈ B(0, L+ cnε))

cos(α(x))µ(C(L))
,

where α(x) is the angle between π−1(x) and (0, . . . , 0,−R). Also z(0) has density function
given by

f0(x) =
1(x ∈ B(0, L+ cnε))

vol(B(0, L+ cnε))
.

From Lemma 2.3 we get that fR(x) → f(x) as R → ∞ uniformly over all x, and hence the
maximal coupling will succeed with probability tending to 1 as R→ ∞. So, for π(ζ(0)) and
z(0) we have used the maximal coupling. Given π(ζ(0)) and z(0), then the density function
of π(ζ(1)) is given by

f1R(x) =
1(x ∈ π(C(ζ(0), ε)))
cos(α(x))µ(C(ζ(0), ε))

and ξ(1) has density function given by

f1(x) =
1(x ∈ B(ξ(0), ε))
vol(B(ξ(0), ε))

.

Thus if the coupling of the starting points has succeeded, then we can use the maximal
coupling to couple the first steps and continuing this way we can couple the first n steps.
Hence, we get that the probability that the coupling succeeds tends to 1 as R→ ∞.

Lemma 4.1. Let (Ai)i=1,...,n be measurable sets in Rd such that vol(∂Ai) = 0, for all i.
Then the function defined by

x = (x1, . . . , xn) 7→ vol(∪n
i=1(xi +Ai))

is continuous.
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Proof. Let Aδ stand for the δ-enlargement of the set A, i.e. Aδ = A+B(0, δ). If vol(∂A) = 0,
then it is easy to see that

vol(Aδ) → vol(A) as δ → 0. (4.3)

Let x = (x1, . . . , xn) be such that ∥x∥ < δ. We then have that

vol((∪n
i=1(xi +Ai))△ (∪n

i=1Ai)) ≤ vol(∪n
i=1 ((xi +Ai)△Ai)) ≤

n∑
i=1

vol((xi +Ai)△Ai).

But vol((xi +Ai)△Ai) = 2(vol((xi +Ai)∪Ai)− vol(Ai)) and vol((xi +Ai)∪Ai) ≤ vol(Aδ
i ),

and hence by (4.3) we get the desired convergence.

5 Concluding Remarks and Questions

1. We recall here the detection problem as discussed in [8]. Let Π = {Xi} be a Poisson
point process in Rd of intensity λ. We now let each point Xi of the Poisson process
move according to an independent standard Brownian motion (ξi(s))s≥0. Let u be
another particle originally placed at the origin and which is moving according to a
deterministic function f . We define the detection time of u analogously to (2.9) via

T f
det = inf{s ≥ 0 : ∃i s.t. Xi + ξi(s) ∈ B(f(s), r)}.

Then from [8, Lemma 3.1] we have that

P(T f
det > t) = exp (−λE[vol (∪s≤tB(ξ(s) + f(s), r))]) .

In terms of the detection probabilities, Theorem 1.1 then gives that

P(T f
det > t) ≤ P(T 0

det > t),

where T 0
det stands for the detection time when u does not move at all. This means

that the best strategy for u to stay undetected for long time is to stay put. This is an
instance of the Pascal principle, which is discussed in [3] and [6] for a similar model
in the discrete lattice.

2. Let (Ds) be a collection of open sets as in Theorem 1.1. We showed that

E[vol(∪s≤t(ξ(s) +Ds))] ≥ E[vol(∪s≤t(ξ(s) +Bs))],

where the sets (Bs) are balls as defined in Theorem 1.1. Does the stochastic domination
inequality

P(vol(∪s≤t(ξ(s) +Ds)) ≥ α) ≥ P(vol(∪s≤t(ξ(s) +Bs)) ≥ α) ∀α

also hold?

3. Fix an open set D in Rd. For any function f : R+ → Rd, consider the Wiener sausage
with drift f determined by D, namely WD

f (t) = ∪s≤t(D+ ξ(s)+ f(s)). For which sets

D is it true that the expected volume of WD
f is minimized when f = 0?

12



4. Let f : R+ → Rd be a measurable function. Consider the convex hull of Cf (t) =
(ξ + f)[0, t]. Is the expected volume of Cf (t) minimized when f = 0?
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